Filtros : "Neurocomputing" "Financiamento CAPES" Limpar

Filtros



Refine with date range


  • Source: Neurocomputing. Unidade: ICMC

    Subjects: VEÍCULOS AUTÔNOMOS, MÉTODOS DE PREVISÃO E CORREÇÃO, TRAJETÓRIA, TOMADA DE DECISÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES, Iago Pachêco e WOLF, Denis Fernando. A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving. Neurocomputing, v. 651, p. 1-19, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2025.131014. Acesso em: 11 nov. 2025.
    • APA

      Gomes, I. P., & Wolf, D. F. (2025). A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving. Neurocomputing, 651, 1-19. doi:10.1016/j.neucom.2025.131014
    • NLM

      Gomes IP, Wolf DF. A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving [Internet]. Neurocomputing. 2025 ; 651 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2025.131014
    • Vancouver

      Gomes IP, Wolf DF. A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving [Internet]. Neurocomputing. 2025 ; 651 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2025.131014
    GDS 09. Industry, innovation and infrastructure
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, PROCESSAMENTO DE IMAGENS, DIAGNÓSTICO POR IMAGEM, TOMOGRAFIA, COVID-19

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUZADIN, Aldimir et al. Learning label diffusion maps for semi-automatic segmentation of lung CT images with COVID-19. Neurocomputing, v. 522, p. 24-38, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2022.12.003. Acesso em: 11 nov. 2025.
    • APA

      Bruzadin, A., Boaventura, M., Colnago, M., Negri, R. G., & Casaca, W. C. de O. (2023). Learning label diffusion maps for semi-automatic segmentation of lung CT images with COVID-19. Neurocomputing, 522, 24-38. doi:10.1016/j.neucom.2022.12.003
    • NLM

      Bruzadin A, Boaventura M, Colnago M, Negri RG, Casaca WC de O. Learning label diffusion maps for semi-automatic segmentation of lung CT images with COVID-19 [Internet]. Neurocomputing. 2023 ; 522 24-38.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2022.12.003
    • Vancouver

      Bruzadin A, Boaventura M, Colnago M, Negri RG, Casaca WC de O. Learning label diffusion maps for semi-automatic segmentation of lung CT images with COVID-19 [Internet]. Neurocomputing. 2023 ; 522 24-38.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2022.12.003
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, ANÁLISE DE DESEMPENHO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, v. 511, p. 43-53, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2022.09.042. Acesso em: 11 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2022). Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, 511, 43-53. doi:10.1016/j.neucom.2022.09.042
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
  • Source: Neurocomputing. Unidade: IF

    Subjects: BIOFÍSICA, REDES NEURAIS, NEURÔNIOS, SINCRONIZAÇÃO, SINAPSE, PLASTICIDADE NEURONAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVEIRA, João Antonio Paludo et al. Effects of burst-timing-dependent plasticity on synchronous behaviour in neuronal network. Neurocomputing, v. 436, p. 126-135, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2021.01.044. Acesso em: 11 nov. 2025.
    • APA

      Silveira, J. A. P., Protachevicz, R. P., Viana, R. L., & Batista, A. (2021). Effects of burst-timing-dependent plasticity on synchronous behaviour in neuronal network. Neurocomputing, 436, 126-135. doi:10.1016/j.neucom.2021.01.044
    • NLM

      Silveira JAP, Protachevicz RP, Viana RL, Batista A. Effects of burst-timing-dependent plasticity on synchronous behaviour in neuronal network [Internet]. Neurocomputing. 2021 ; 436 126-135.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2021.01.044
    • Vancouver

      Silveira JAP, Protachevicz RP, Viana RL, Batista A. Effects of burst-timing-dependent plasticity on synchronous behaviour in neuronal network [Internet]. Neurocomputing. 2021 ; 436 126-135.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2021.01.044

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025