Filtros : "Neurocomputing" "WOLF, DENIS FERNANDO" Limpar

Filtros



Limitar por data


  • Fonte: Neurocomputing. Unidade: ICMC

    Assuntos: VEÍCULOS AUTÔNOMOS, MÉTODOS DE PREVISÃO E CORREÇÃO, TRAJETÓRIA, TOMADA DE DECISÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES, Iago Pachêco e WOLF, Denis Fernando. A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving. Neurocomputing, v. 651, p. 1-19, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2025.131014. Acesso em: 11 nov. 2025.
    • APA

      Gomes, I. P., & Wolf, D. F. (2025). A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving. Neurocomputing, 651, 1-19. doi:10.1016/j.neucom.2025.131014
    • NLM

      Gomes IP, Wolf DF. A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving [Internet]. Neurocomputing. 2025 ; 651 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2025.131014
    • Vancouver

      Gomes IP, Wolf DF. A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving [Internet]. Neurocomputing. 2025 ; 651 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2025.131014
    ODS 09. Indústria, inovação e infraestrutura
  • Fonte: Neurocomputing. Unidades: EESC, ICMC

    Assuntos: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, ENGENHARIA ELÉTRICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, v. 511, p. 43-53, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2022.09.042. Acesso em: 11 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2022). Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, 511, 43-53. doi:10.1016/j.neucom.2022.09.042
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
  • Fonte: Neurocomputing. Unidade: ICMC

    Assuntos: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, ANÁLISE DE DESEMPENHO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, v. 511, p. 43-53, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2022.09.042. Acesso em: 11 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2022). Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, 511, 43-53. doi:10.1016/j.neucom.2022.09.042
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
  • Fonte: Neurocomputing. Unidade: ICMC

    Assuntos: SISTEMAS EMBUTIDOS, ROBÓTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Jefferson Rodrigo de et al. Vision-based waypoint following using templates and artificial neural networks. 2013, Anais.. Amsterdam: Elsevier, 2013. p. 77-80. Disponível em: https://doi.org/10.1016/j.neucom.2012.07.040. Acesso em: 11 nov. 2025.
    • APA

      Souza, J. R. de, Pessin, G., Shinzato, P. Y., Osório, F. S., & Wolf, D. F. (2013). Vision-based waypoint following using templates and artificial neural networks. In Neurocomputing (Vol. 107, p. 77-80). Amsterdam: Elsevier. doi:10.1016/j.neucom.2012.07.040
    • NLM

      Souza JR de, Pessin G, Shinzato PY, Osório FS, Wolf DF. Vision-based waypoint following using templates and artificial neural networks [Internet]. Neurocomputing. 2013 ; 107 77-80.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2012.07.040
    • Vancouver

      Souza JR de, Pessin G, Shinzato PY, Osório FS, Wolf DF. Vision-based waypoint following using templates and artificial neural networks [Internet]. Neurocomputing. 2013 ; 107 77-80.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2012.07.040

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025