Filtros : "Neural Networks" "REDES NEURAIS" Limpar

Filtros



Refine with date range


  • Source: Neural Networks. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, BENCHMARKS, REVISÃO SISTEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEZES, Angelo Garangau et al. Continual object detection: a review of definitions, strategies, and challenges. Neural Networks, v. 161, p. 476-493, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.neunet.2023.01.041. Acesso em: 16 nov. 2025.
    • APA

      Menezes, A. G., Moura, G. de, Alves, C., & Carvalho, A. C. P. de L. F. de. (2023). Continual object detection: a review of definitions, strategies, and challenges. Neural Networks, 161, 476-493. doi:10.1016/j.neunet.2023.01.041
    • NLM

      Menezes AG, Moura G de, Alves C, Carvalho ACP de LF de. Continual object detection: a review of definitions, strategies, and challenges [Internet]. Neural Networks. 2023 ; 161 476-493.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2023.01.041
    • Vancouver

      Menezes AG, Moura G de, Alves C, Carvalho ACP de LF de. Continual object detection: a review of definitions, strategies, and challenges [Internet]. Neural Networks. 2023 ; 161 476-493.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2023.01.041
  • Source: Neural Networks. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, RECONHECIMENTO DE PADRÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Fernando Pereira dos et al. Learning image features with fewer labels using a semi-supervised deep convolutional network. Neural Networks, v. 132, p. 131-143, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.neunet.2020.08.016. Acesso em: 16 nov. 2025.
    • APA

      Santos, F. P. dos, Zor, C., Kittler, J., & Ponti, M. A. (2020). Learning image features with fewer labels using a semi-supervised deep convolutional network. Neural Networks, 132, 131-143. doi:10.1016/j.neunet.2020.08.016
    • NLM

      Santos FP dos, Zor C, Kittler J, Ponti MA. Learning image features with fewer labels using a semi-supervised deep convolutional network [Internet]. Neural Networks. 2020 ; 132 131-143.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2020.08.016
    • Vancouver

      Santos FP dos, Zor C, Kittler J, Ponti MA. Learning image features with fewer labels using a semi-supervised deep convolutional network [Internet]. Neural Networks. 2020 ; 132 131-143.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2020.08.016
  • Source: Neural Networks. Unidade: IF

    Subjects: REDES NEURAIS, SINCRONIZAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Rafael Ribaski et al. Spike timing-dependent plasticity induces non-trivial topology in the brain. Neural Networks, v. 88, p. 58–64, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.neunet.2017.01.010. Acesso em: 16 nov. 2025.
    • APA

      Borges, R. R., Borges, F. da S., Lameu, E. L., Batista, A. M., Iarosz, K. C., Caldas, I. L., et al. (2017). Spike timing-dependent plasticity induces non-trivial topology in the brain. Neural Networks, 88, 58–64. doi:10.1016/j.neunet.2017.01.010
    • NLM

      Borges RR, Borges F da S, Lameu EL, Batista AM, Iarosz KC, Caldas IL, Antonopoulose CG, Baptista M da S. Spike timing-dependent plasticity induces non-trivial topology in the brain [Internet]. Neural Networks. 2017 ; 88 58–64.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2017.01.010
    • Vancouver

      Borges RR, Borges F da S, Lameu EL, Batista AM, Iarosz KC, Caldas IL, Antonopoulose CG, Baptista M da S. Spike timing-dependent plasticity induces non-trivial topology in the brain [Internet]. Neural Networks. 2017 ; 88 58–64.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2017.01.010
  • Source: Neural Networks. Conference titles: International Joint Conference on Neural Networks - IJCNN. Unidade: IFSC

    Subjects: REDES NEURAIS, COGNIÇÃO, LINGUAGEM (AQUISIÇÃO), ALGORITMOS, NEUROCIÊNCIAS (MODELOS), LINGUÍSTICA COMPUTACIONAL, LÉXICO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTANARI, José Fernando et al. Cross-situational learning of object-word mapping using neural modeling fields. Neural Networks. Oxford: Pergamon-Elsevier Science. Disponível em: https://doi.org/10.1016/j.neunet.2009.06.010. Acesso em: 16 nov. 2025. , 2009
    • APA

      Fontanari, J. F., Tikhanoff, V., Cangelosi, A., Ilin, R., & Perlovsky, L. I. (2009). Cross-situational learning of object-word mapping using neural modeling fields. Neural Networks. Oxford: Pergamon-Elsevier Science. doi:10.1016/j.neunet.2009.06.010
    • NLM

      Fontanari JF, Tikhanoff V, Cangelosi A, Ilin R, Perlovsky LI. Cross-situational learning of object-word mapping using neural modeling fields [Internet]. Neural Networks. 2009 ; 22( 5/6): 579-585.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2009.06.010
    • Vancouver

      Fontanari JF, Tikhanoff V, Cangelosi A, Ilin R, Perlovsky LI. Cross-situational learning of object-word mapping using neural modeling fields [Internet]. Neural Networks. 2009 ; 22( 5/6): 579-585.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2009.06.010
  • Source: Neural Networks. Unidade: ICMC

    Assunto: REDES NEURAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BREVE, Fabricio A. et al. Chaotic phase synchronization and desynchronization in an oscillator network for object selection. Neural Networks, v. 22, n. 5-6, p. 728-737, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.neunet.2009.06.027. Acesso em: 16 nov. 2025.
    • APA

      Breve, F. A., Zhao, L., Quiles, M. G., & Macau, E. E. N. (2009). Chaotic phase synchronization and desynchronization in an oscillator network for object selection. Neural Networks, 22( 5-6), 728-737. doi:10.1016/j.neunet.2009.06.027
    • NLM

      Breve FA, Zhao L, Quiles MG, Macau EEN. Chaotic phase synchronization and desynchronization in an oscillator network for object selection [Internet]. Neural Networks. 2009 ;22( 5-6): 728-737.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2009.06.027
    • Vancouver

      Breve FA, Zhao L, Quiles MG, Macau EEN. Chaotic phase synchronization and desynchronization in an oscillator network for object selection [Internet]. Neural Networks. 2009 ;22( 5-6): 728-737.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2009.06.027
  • Source: Neural Networks. Unidade: EP

    Assunto: REDES NEURAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEL MORAL HERNANDEZ, Emilio. Non-homogenous neural networks with chaotic recursive nodes: connectivity and multi-assemblies structures in recursive processing elements architectures. Neural Networks, v. 18, n. 5-6, p. 532-540, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.neunet.2005.06.035. Acesso em: 16 nov. 2025.
    • APA

      Del Moral Hernandez, E. (2005). Non-homogenous neural networks with chaotic recursive nodes: connectivity and multi-assemblies structures in recursive processing elements architectures. Neural Networks, 18( 5-6), 532-540. doi:10.1016/j.neunet.2005.06.035
    • NLM

      Del Moral Hernandez E. Non-homogenous neural networks with chaotic recursive nodes: connectivity and multi-assemblies structures in recursive processing elements architectures [Internet]. Neural Networks. 2005 ;18( 5-6): 532-540.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2005.06.035
    • Vancouver

      Del Moral Hernandez E. Non-homogenous neural networks with chaotic recursive nodes: connectivity and multi-assemblies structures in recursive processing elements architectures [Internet]. Neural Networks. 2005 ;18( 5-6): 532-540.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.neunet.2005.06.035

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025