Filtros : "Mathematical Methods in the Applied Sciences" "Financiamento CNPq" Limpar

Filtros



Refine with date range


  • Source: Mathematical Methods in the Applied Sciences. Unidade: IME

    Subjects: OPERADORES DE SCHRODINGER, EQUAÇÃO DE SCHRODINGER, MÉTODOS VARIACIONAIS

    Disponível em 2026-08-11Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Sihua e SICILIANO, Gaetano e SUN, Xueqi. Solutions for mass subcritical and supercritical Schrödinger–Bopp–Podolsky type system with logarithmic nonlinearity. Mathematical Methods in the Applied Sciences, 2025Tradução . . Disponível em: https://doi.org/10.1002/mma.70036. Acesso em: 16 nov. 2025.
    • APA

      Liang, S., Siciliano, G., & Sun, X. (2025). Solutions for mass subcritical and supercritical Schrödinger–Bopp–Podolsky type system with logarithmic nonlinearity. Mathematical Methods in the Applied Sciences. doi:10.1002/mma.70036
    • NLM

      Liang S, Siciliano G, Sun X. Solutions for mass subcritical and supercritical Schrödinger–Bopp–Podolsky type system with logarithmic nonlinearity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ;[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.70036
    • Vancouver

      Liang S, Siciliano G, Sun X. Solutions for mass subcritical and supercritical Schrödinger–Bopp–Podolsky type system with logarithmic nonlinearity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ;[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.70036
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, ELASTICIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro et al. A non-homogeneous weakly damped Lamé system with time-dependent delay. Mathematical Methods in the Applied Sciences, v. 46, n. 8, p. 8793-8805, 2023Tradução . . Disponível em: https://doi.org/10.1002/mma.9017. Acesso em: 16 nov. 2025.
    • APA

      Dattori da Silva, P. L., Ma, T. F., Maravi-Percca, E. M., & Seminario-Huertas, P. N. (2023). A non-homogeneous weakly damped Lamé system with time-dependent delay. Mathematical Methods in the Applied Sciences, 46( 8), 8793-8805. doi:10.1002/mma.9017
    • NLM

      Dattori da Silva PL, Ma TF, Maravi-Percca EM, Seminario-Huertas PN. A non-homogeneous weakly damped Lamé system with time-dependent delay [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46( 8): 8793-8805.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.9017
    • Vancouver

      Dattori da Silva PL, Ma TF, Maravi-Percca EM, Seminario-Huertas PN. A non-homogeneous weakly damped Lamé system with time-dependent delay [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46( 8): 8793-8805.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.9017
  • Source: Mathematical Methods in the Applied Sciences. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DA ONDA, TORNADOS, ESPAÇOS MÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, v. 46, p. 2602-2635, 2023Tradução . . Disponível em: https://doi.org/10.1002/mma.8663. Acesso em: 16 nov. 2025.
    • APA

      Ebert, M. R., & Marques, J. (2023). Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, 46, 2602-2635. doi:10.1002/mma.8663
    • NLM

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.8663
    • Vancouver

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.8663
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, v. 45, n. Ja 2022, p. 579-584, 2022Tradução . . Disponível em: https://doi.org/10.1002/mma.7798. Acesso em: 16 nov. 2025.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2022). On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, 45( Ja 2022), 579-584. doi:10.1002/mma.7798
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.7798
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.7798

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025