Filtros : "Electronic Notes in Discrete Mathematics" "Alemanha" Limpar

Filtros



Refine with date range


  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Discrete Mathematics Days 2018. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie e KOHAYAKAWA, Yoshiharu e PERSON, Yury. Near-perfect clique-factors in sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2018.06.038. Acesso em: 09 nov. 2025. , 2018
    • APA

      Han, J., Kohayakawa, Y., & Person, Y. (2018). Near-perfect clique-factors in sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2018.06.038
    • NLM

      Han J, Kohayakawa Y, Person Y. Near-perfect clique-factors in sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2018 ; 68 221-226.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2018.06.038
    • Vancouver

      Han J, Kohayakawa Y, Person Y. Near-perfect clique-factors in sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2018 ; 68 221-226.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2018.06.038
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: European Conference on Combinatorics, Graph Theory and Applications - EUROCOMB'17. Unidade: IME

    Subjects: GRAFOS ALEATÓRIOS, TEORIA DE RAMSEY

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e MOTA, Guilherme Oliveira e SCHACHT, M. Monochromatic trees in random graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2017.07.033. Acesso em: 09 nov. 2025. , 2017
    • APA

      Kohayakawa, Y., Mota, G. O., & Schacht, M. (2017). Monochromatic trees in random graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2017.07.033
    • NLM

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 759-764.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2017.07.033
    • Vancouver

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 759-764.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2017.07.033
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: European Conference on Combinatorics, Graph Theory and Applications - EUROCOMB'17. Unidade: IME

    Assunto: MATEMÁTICA DISCRETA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOPPEN, Carlos et al. Estimating the distance to a hereditary graph property. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2017.07.014. Acesso em: 09 nov. 2025. , 2017
    • APA

      Hoppen, C., Kohayakawa, Y., Lang, R., Lefmann, H., & Stagni, H. (2017). Estimating the distance to a hereditary graph property. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2017.07.014
    • NLM

      Hoppen C, Kohayakawa Y, Lang R, Lefmann H, Stagni H. Estimating the distance to a hereditary graph property [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 607-613.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2017.07.014
    • Vancouver

      Hoppen C, Kohayakawa Y, Lang R, Lefmann H, Stagni H. Estimating the distance to a hereditary graph property [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 607-613.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2017.07.014
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Latin-American Algorithms, Graphs and Optimization Symposium - LAGOS. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu et al. A counting lemma for sparse pseudorandom hypergraphs. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.endm.2015.07.070. Acesso em: 09 nov. 2025. , 2015
    • APA

      Kohayakawa, Y., Mota, G. O., Schacht, M., & Taraz, A. (2015). A counting lemma for sparse pseudorandom hypergraphs. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.endm.2015.07.070
    • NLM

      Kohayakawa Y, Mota GO, Schacht M, Taraz A. A counting lemma for sparse pseudorandom hypergraphs [Internet]. Electronic Notes in Discrete Mathematics. 2015 ; 50 421-426.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2015.07.070
    • Vancouver

      Kohayakawa Y, Mota GO, Schacht M, Taraz A. A counting lemma for sparse pseudorandom hypergraphs [Internet]. Electronic Notes in Discrete Mathematics. 2015 ; 50 421-426.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2015.07.070
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: European Conference on Combinatorics, Graph Theory and Applications -EuroComb. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Cristina Gomes e SCHMIDT, Tina Janne e TARAZ, Anusch. On minimum bisection and related partition problems in graphs with bounded tree width. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.endm.2015.06.067. Acesso em: 09 nov. 2025. , 2015
    • APA

      Fernandes, C. G., Schmidt, T. J., & Taraz, A. (2015). On minimum bisection and related partition problems in graphs with bounded tree width. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.endm.2015.06.067
    • NLM

      Fernandes CG, Schmidt TJ, Taraz A. On minimum bisection and related partition problems in graphs with bounded tree width [Internet]. Electronic Notes in Discrete Mathematics. 2015 ; No 2015 481-488.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2015.06.067
    • Vancouver

      Fernandes CG, Schmidt TJ, Taraz A. On minimum bisection and related partition problems in graphs with bounded tree width [Internet]. Electronic Notes in Discrete Mathematics. 2015 ; No 2015 481-488.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2015.06.067
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Latin-American Algorithms, Graphs, and Optimization Symposium - LAGOS. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALLEN, Peter et al. An approximate blow-up lemma for sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.endm.2013.10.061. Acesso em: 09 nov. 2025. , 2013
    • APA

      Allen, P., Böttcher, J., Hàn, H., Kohayakawa, Y., & Person, Y. (2013). An approximate blow-up lemma for sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.endm.2013.10.061
    • NLM

      Allen P, Böttcher J, Hàn H, Kohayakawa Y, Person Y. An approximate blow-up lemma for sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2013 ; 44 393-398.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2013.10.061
    • Vancouver

      Allen P, Böttcher J, Hàn H, Kohayakawa Y, Person Y. An approximate blow-up lemma for sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2013 ; 44 393-398.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2013.10.061
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: European Conference on Combinatorics, Graph Theory and Applications - EuroComb. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOPPEN, Carlos e KOHAYAKAWA, Yoshiharu e LEFMANN, Hanno. Edge colorings of graphs avoiding some fixed monochromatic subgraph with linear Turán number. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.endm.2011.09.076. Acesso em: 09 nov. 2025. , 2011
    • APA

      Hoppen, C., Kohayakawa, Y., & Lefmann, H. (2011). Edge colorings of graphs avoiding some fixed monochromatic subgraph with linear Turán number. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.endm.2011.09.076
    • NLM

      Hoppen C, Kohayakawa Y, Lefmann H. Edge colorings of graphs avoiding some fixed monochromatic subgraph with linear Turán number [Internet]. Electronic Notes in Discrete Mathematics. 2011 ; 38 469-474.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2011.09.076
    • Vancouver

      Hoppen C, Kohayakawa Y, Lefmann H. Edge colorings of graphs avoiding some fixed monochromatic subgraph with linear Turán number [Internet]. Electronic Notes in Discrete Mathematics. 2011 ; 38 469-474.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2011.09.076
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Latin-American Algorithms, Graphs and Optimization Symposium - LAGOS. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BÖTTCHER, Julia e KOHAYAKAWA, Yoshiharu e TARAZ, Anusch. Almost spanning subgraphs of random graphs after adversarial edge removal. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.endm.2009.11.055. Acesso em: 09 nov. 2025. , 2009
    • APA

      Böttcher, J., Kohayakawa, Y., & Taraz, A. (2009). Almost spanning subgraphs of random graphs after adversarial edge removal. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.endm.2009.11.055
    • NLM

      Böttcher J, Kohayakawa Y, Taraz A. Almost spanning subgraphs of random graphs after adversarial edge removal [Internet]. Electronic Notes in Discrete Mathematics. 2009 ; 35 335-340.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2009.11.055
    • Vancouver

      Böttcher J, Kohayakawa Y, Taraz A. Almost spanning subgraphs of random graphs after adversarial edge removal [Internet]. Electronic Notes in Discrete Mathematics. 2009 ; 35 335-340.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2009.11.055
  • Source: Electronic Notes in Discrete Mathematics. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOPPEN, C e KOHAYAKAWA, Yoshiharu e LEFMANN, H. Kneser colorings of uniform hypergraphs. Electronic Notes in Discrete Mathematics, v. 34, p. 219-223, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.endm.2009.07.036. Acesso em: 09 nov. 2025.
    • APA

      Hoppen, C., Kohayakawa, Y., & Lefmann, H. (2009). Kneser colorings of uniform hypergraphs. Electronic Notes in Discrete Mathematics, 34, 219-223. doi:10.1016/j.endm.2009.07.036
    • NLM

      Hoppen C, Kohayakawa Y, Lefmann H. Kneser colorings of uniform hypergraphs [Internet]. Electronic Notes in Discrete Mathematics. 2009 ; 34 219-223.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2009.07.036
    • Vancouver

      Hoppen C, Kohayakawa Y, Lefmann H. Kneser colorings of uniform hypergraphs [Internet]. Electronic Notes in Discrete Mathematics. 2009 ; 34 219-223.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.endm.2009.07.036

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025