Repetition-free longest common subsequence of random sequences (2016)
Fonte: Discrete Applied Mathematics. Nome do evento: Latin American Algorithms, Graphs, and Optimization Symposium - LAGOS. Unidade: IME
Assuntos: COMBINATÓRIA PROBABILÍSTICA, COMBINATÓRIA, CIÊNCIA DA COMPUTAÇÃO
ABNT
FERNANDES, Cristina Gomes e KIWI, Marcos. Repetition-free longest common subsequence of random sequences. Discrete Applied Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.dam.2015.07.005. Acesso em: 08 nov. 2025. , 2016APA
Fernandes, C. G., & Kiwi, M. (2016). Repetition-free longest common subsequence of random sequences. Discrete Applied Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.dam.2015.07.005NLM
Fernandes CG, Kiwi M. Repetition-free longest common subsequence of random sequences [Internet]. Discrete Applied Mathematics. 2016 ; 210 75-87.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.dam.2015.07.005Vancouver
Fernandes CG, Kiwi M. Repetition-free longest common subsequence of random sequences [Internet]. Discrete Applied Mathematics. 2016 ; 210 75-87.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.dam.2015.07.005
