Filtros : "PROCESSOS ESTOCÁSTICOS ESPECIAIS" "Indexado no ISI - Institute for Scientific Information" Limpar

Filtros



Limitar por data


  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e NIEDERHAUSER, Beat M. Harness processes and harmonic crystals. Stochastic Processes and their Applications, v. 116, n. 6, p. 939-956, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2005.12.004. Acesso em: 12 nov. 2025.
    • APA

      Ferrari, P. A., & Niederhauser, B. M. (2006). Harness processes and harmonic crystals. Stochastic Processes and their Applications, 116( 6), 939-956. doi:10.1016/j.spa.2005.12.004
    • NLM

      Ferrari PA, Niederhauser BM. Harness processes and harmonic crystals [Internet]. Stochastic Processes and their Applications. 2006 ; 116( 6): 939-956.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.spa.2005.12.004
    • Vancouver

      Ferrari PA, Niederhauser BM. Harness processes and harmonic crystals [Internet]. Stochastic Processes and their Applications. 2006 ; 116( 6): 939-956.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.spa.2005.12.004
  • Fonte: Annals of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e PIMENTEL, Leandro P. R. Competition interfaces and second class particles. Annals of Probability, v. 33, n. 4, p. 1235-1254, 2005Tradução . . Disponível em: https://doi.org/10.1214/009117905000000080. Acesso em: 12 nov. 2025.
    • APA

      Ferrari, P. A., & Pimentel, L. P. R. (2005). Competition interfaces and second class particles. Annals of Probability, 33( 4), 1235-1254. doi:10.1214/009117905000000080
    • NLM

      Ferrari PA, Pimentel LPR. Competition interfaces and second class particles [Internet]. Annals of Probability. 2005 ; 33( 4): 1235-1254.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/009117905000000080
    • Vancouver

      Ferrari PA, Pimentel LPR. Competition interfaces and second class particles [Internet]. Annals of Probability. 2005 ; 33( 4): 1235-1254.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/009117905000000080
  • Fonte: Journal of Applied Probability. Unidade: IME

    Assuntos: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MACHADO, Fábio Prates e SARKAR, Anish. The critical probability for the frog model is not a monotonic function of the graph. Journal of Applied Probability, v. 41, n. 1, p. 292-298, 2004Tradução . . Disponível em: https://doi.org/10.1239/jap/1077134688. Acesso em: 12 nov. 2025.
    • APA

      Fontes, L. R., Machado, F. P., & Sarkar, A. (2004). The critical probability for the frog model is not a monotonic function of the graph. Journal of Applied Probability, 41( 1), 292-298. doi:10.1239/jap/1077134688
    • NLM

      Fontes LR, Machado FP, Sarkar A. The critical probability for the frog model is not a monotonic function of the graph [Internet]. Journal of Applied Probability. 2004 ; 41( 1): 292-298.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1239/jap/1077134688
    • Vancouver

      Fontes LR, Machado FP, Sarkar A. The critical probability for the frog model is not a monotonic function of the graph [Internet]. Journal of Applied Probability. 2004 ; 41( 1): 292-298.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1239/jap/1077134688
  • Fonte: Mathematics and Computers in Simulation. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Oswaldo Scarpa Magalhães e FERREIRA, Carlos Eduardo e MACHADO, Fábio Prates. Estimates for the spreading velocity of an epidemic model. Mathematics and Computers in Simulation, v. 64, n. 6, p. 609-616, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.matcom.2003.11.014. Acesso em: 12 nov. 2025.
    • APA

      Alves, O. S. M., Ferreira, C. E., & Machado, F. P. (2004). Estimates for the spreading velocity of an epidemic model. Mathematics and Computers in Simulation, 64( 6), 609-616. doi:10.1016/j.matcom.2003.11.014
    • NLM

      Alves OSM, Ferreira CE, Machado FP. Estimates for the spreading velocity of an epidemic model [Internet]. Mathematics and Computers in Simulation. 2004 ; 64( 6): 609-616.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.matcom.2003.11.014
    • Vancouver

      Alves OSM, Ferreira CE, Machado FP. Estimates for the spreading velocity of an epidemic model [Internet]. Mathematics and Computers in Simulation. 2004 ; 64( 6): 609-616.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/j.matcom.2003.11.014
  • Fonte: Stochastic Processes and Their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e POPOV, Serguei Yu. Branching random walk in random environment on trees. Stochastic Processes and Their Applications, v. 106, n. 1, p. 95-106, 2003Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(03)00039-5. Acesso em: 12 nov. 2025.
    • APA

      Machado, F. P., & Popov, S. Y. (2003). Branching random walk in random environment on trees. Stochastic Processes and Their Applications, 106( 1), 95-106. doi:10.1016/s0304-4149(03)00039-5
    • NLM

      Machado FP, Popov SY. Branching random walk in random environment on trees [Internet]. Stochastic Processes and Their Applications. 2003 ; 106( 1): 95-106.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/s0304-4149(03)00039-5
    • Vancouver

      Machado FP, Popov SY. Branching random walk in random environment on trees [Internet]. Stochastic Processes and Their Applications. 2003 ; 106( 1): 95-106.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/s0304-4149(03)00039-5
  • Fonte: Annals of Applied Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Oswaldo Scarpa Magalhães e MACHADO, Fábio Prates e POPOV, Serguei Yu. The shape theorem for the frog model. Annals of Applied Probability, v. 12, n. 2, p. 533-546, 2002Tradução . . Disponível em: https://doi.org/10.1214/aoap/1026915614. Acesso em: 12 nov. 2025.
    • APA

      Alves, O. S. M., Machado, F. P., & Popov, S. Y. (2002). The shape theorem for the frog model. Annals of Applied Probability, 12( 2), 533-546. doi:10.1214/aoap/1026915614
    • NLM

      Alves OSM, Machado FP, Popov SY. The shape theorem for the frog model [Internet]. Annals of Applied Probability. 2002 ; 12( 2): 533-546.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/aoap/1026915614
    • Vancouver

      Alves OSM, Machado FP, Popov SY. The shape theorem for the frog model [Internet]. Annals of Applied Probability. 2002 ; 12( 2): 533-546.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/aoap/1026915614
  • Fonte: Journal of Theoretical Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu e SISKO, V. V. On the connection between oriented percolation and contact process. Journal of Theoretical Probability, v. 15, n. 1, p. 207-221, 2002Tradução . . Disponível em: https://doi.org/10.1023/A:1013847619585. Acesso em: 12 nov. 2025.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., & Sisko, V. V. (2002). On the connection between oriented percolation and contact process. Journal of Theoretical Probability, 15( 1), 207-221. doi:10.1023/A:1013847619585
    • NLM

      Menshikov MV'evich, Popov SY, Sisko VV. On the connection between oriented percolation and contact process [Internet]. Journal of Theoretical Probability. 2002 ; 15( 1): 207-221.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1023/A:1013847619585
    • Vancouver

      Menshikov MV'evich, Popov SY, Sisko VV. On the connection between oriented percolation and contact process [Internet]. Journal of Theoretical Probability. 2002 ; 15( 1): 207-221.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1023/A:1013847619585
  • Fonte: Annals of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e ISOPI, Marco e NEWMAN, Charles M. Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension. Annals of Probability, v. 30, n. 2, p. 579-604, 2002Tradução . . Disponível em: https://doi.org/10.1214/aop/1023481003. Acesso em: 12 nov. 2025.
    • APA

      Fontes, L. R., Isopi, M., & Newman, C. M. (2002). Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension. Annals of Probability, 30( 2), 579-604. doi:10.1214/aop/1023481003
    • NLM

      Fontes LR, Isopi M, Newman CM. Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension [Internet]. Annals of Probability. 2002 ; 30( 2): 579-604.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/aop/1023481003
    • Vancouver

      Fontes LR, Isopi M, Newman CM. Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension [Internet]. Annals of Probability. 2002 ; 30( 2): 579-604.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/aop/1023481003
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assuntos: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu. Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, v. 91, n. 1, p. 21-37, 2001Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(00)00055-7. Acesso em: 12 nov. 2025.
    • APA

      Machado, F. P., Menshikov, M. V. 'evich, & Popov, S. Y. (2001). Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, 91( 1), 21-37. doi:10.1016/s0304-4149(00)00055-7
    • NLM

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7
    • Vancouver

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7
  • Fonte: Probability Theory and Related Fields. Unidade: IME

    Assuntos: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PERCOLAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, v. 119, n. 2, p. 176-186, 2001Tradução . . Disponível em: https://doi.org/10.1007/pl00008757. Acesso em: 12 nov. 2025.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., & Vachkovskaia, M. (2001). On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, 119( 2), 176-186. doi:10.1007/pl00008757
    • NLM

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/pl00008757
    • Vancouver

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/pl00008757
  • Fonte: Statistics & Probability Letters. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Vanderlei da Costa. Component importance in a Random environment. Statistics & Probability Letters, v. 48, n. 2, p. 173-179, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0167-7152(99)00201-1. Acesso em: 12 nov. 2025.
    • APA

      Bueno, V. da C. (2000). Component importance in a Random environment. Statistics & Probability Letters, 48( 2), 173-179. doi:10.1016/s0167-7152(99)00201-1
    • NLM

      Bueno V da C. Component importance in a Random environment [Internet]. Statistics & Probability Letters. 2000 ; 48( 2): 173-179.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/s0167-7152(99)00201-1
    • Vancouver

      Bueno V da C. Component importance in a Random environment [Internet]. Statistics & Probability Letters. 2000 ; 48( 2): 173-179.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1016/s0167-7152(99)00201-1
  • Fonte: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEN HOLLANDER, Frank e MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu. A note on transience versus recurrence for a branching random walk in random environment. Journal of Statistical Physics, v. 95, n. 3/4, p. 587-614, 1999Tradução . . Disponível em: https://doi.org/10.1023/A:1004539225064. Acesso em: 12 nov. 2025.
    • APA

      Den Hollander, F., Menshikov, M. V. 'evich, & Popov, S. Y. (1999). A note on transience versus recurrence for a branching random walk in random environment. Journal of Statistical Physics, 95( 3/4), 587-614. doi:10.1023/A:1004539225064
    • NLM

      Den Hollander F, Menshikov MV'evich, Popov SY. A note on transience versus recurrence for a branching random walk in random environment [Internet]. Journal of Statistical Physics. 1999 ; 95( 3/4): 587-614.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1023/A:1004539225064
    • Vancouver

      Den Hollander F, Menshikov MV'evich, Popov SY. A note on transience versus recurrence for a branching random walk in random environment [Internet]. Journal of Statistical Physics. 1999 ; 95( 3/4): 587-614.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1023/A:1004539225064

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025