Source: Proceedings. Conference titles: Brazilian Conference on Intelligent Systems (BRACIS). Unidade: IME
Subjects: APRENDIZADO COMPUTACIONAL, PROCESSOS ESTOCÁSTICOS
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LOVATTO, Ângelo Gregório e BUENO, Thiago Pereira e BARROS, Leliane Nunes de. Analyzing the effect of stochastic transitions in policy gradients in deep reinforcement learning. 2019, Anais.. Piscataway: IEEE, 2019. Disponível em: https://doi.org/10.1109/BRACIS.2019.00079. Acesso em: 10 nov. 2025.APA
Lovatto, Â. G., Bueno, T. P., & Barros, L. N. de. (2019). Analyzing the effect of stochastic transitions in policy gradients in deep reinforcement learning. In Proceedings. Piscataway: IEEE. doi:10.1109/BRACIS.2019.00079NLM
Lovatto ÂG, Bueno TP, Barros LN de. Analyzing the effect of stochastic transitions in policy gradients in deep reinforcement learning [Internet]. Proceedings. 2019 ;[citado 2025 nov. 10 ] Available from: https://doi.org/10.1109/BRACIS.2019.00079Vancouver
Lovatto ÂG, Bueno TP, Barros LN de. Analyzing the effect of stochastic transitions in policy gradients in deep reinforcement learning [Internet]. Proceedings. 2019 ;[citado 2025 nov. 10 ] Available from: https://doi.org/10.1109/BRACIS.2019.00079
