Filtros : "Plant Physiology" "Plant Physiology" Removido: "ESALQ" Limpar

Filtros



Refine with date range


  • Source: Plant Physiology. Unidade: FCF

    Subjects: TOMATE, FISIOLOGIA VEGETAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHIRINOS, Ximena et al. Transition to ripening in tomato requires hormone-controlled genetic reprogramming initiated in gel tissue. Plant Physiology, v. 191, n. 1, p. 610-625, 2023Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiac464. Acesso em: 17 out. 2024.
    • APA

      Chirinos, X., Ying, S., Rodrigues, M. A., Maza, E., Djari, A., Hu, G., et al. (2023). Transition to ripening in tomato requires hormone-controlled genetic reprogramming initiated in gel tissue. Plant Physiology, 191( 1), 610-625. doi:10.1093/plphys/kiac464
    • NLM

      Chirinos X, Ying S, Rodrigues MA, Maza E, Djari A, Hu G, Liu M, Purgatto E, Fournier S, Regad F, Bouzayen M, Pirrello J. Transition to ripening in tomato requires hormone-controlled genetic reprogramming initiated in gel tissue [Internet]. Plant Physiology. 2023 ; 191( 1): 610-625.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac464
    • Vancouver

      Chirinos X, Ying S, Rodrigues MA, Maza E, Djari A, Hu G, Liu M, Purgatto E, Fournier S, Regad F, Bouzayen M, Pirrello J. Transition to ripening in tomato requires hormone-controlled genetic reprogramming initiated in gel tissue [Internet]. Plant Physiology. 2023 ; 191( 1): 610-625.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac464
  • Source: Plant Physiology. Unidade: IB

    Subjects: METABOLISMO VEGETAL, PAREDE CELULAR VEGETAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMAKRISHNA, Priya e CESARINO, Igor. Loosen up!: How lignin manipulations affect biomass molecular assembly and deconstruction. Plant Physiology, v. 191, n. Ja, p. 3–5, 2023Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiac503. Acesso em: 17 out. 2024.
    • APA

      Ramakrishna, P., & Cesarino, I. (2023). Loosen up!: How lignin manipulations affect biomass molecular assembly and deconstruction. Plant Physiology, 191( Ja), 3–5. doi:10.1093/plphys/kiac503
    • NLM

      Ramakrishna P, Cesarino I. Loosen up!: How lignin manipulations affect biomass molecular assembly and deconstruction [Internet]. Plant Physiology. 2023 ; 191( Ja): 3–5.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac503
    • Vancouver

      Ramakrishna P, Cesarino I. Loosen up!: How lignin manipulations affect biomass molecular assembly and deconstruction [Internet]. Plant Physiology. 2023 ; 191( Ja): 3–5.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac503
  • Source: Plant Physiology. Unidade: IB

    Subjects: PAREDE CELULAR VEGETAL, LIGNINA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMAKRISHNA, Priya e CESARINO, Igor. “Exclusive” update: p-coumaroylation of lignin not restricted to commelinid monocots. Plant Physiology, v. 191, n. 2, p. 811–813, 2023Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiac536. Acesso em: 17 out. 2024.
    • APA

      Ramakrishna, P., & Cesarino, I. (2023). “Exclusive” update: p-coumaroylation of lignin not restricted to commelinid monocots. Plant Physiology, 191( 2), 811–813. doi:10.1093/plphys/kiac536
    • NLM

      Ramakrishna P, Cesarino I. “Exclusive” update: p-coumaroylation of lignin not restricted to commelinid monocots [Internet]. Plant Physiology. 2023 ; 191( 2): 811–813.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac536
    • Vancouver

      Ramakrishna P, Cesarino I. “Exclusive” update: p-coumaroylation of lignin not restricted to commelinid monocots [Internet]. Plant Physiology. 2023 ; 191( 2): 811–813.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac536
  • Source: Plant Physiology. Unidade: IB

    Subjects: FRUTAS, PAREDE CELULAR VEGETAL, METABOLISMO VEGETAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CESARINO, Igor. Killing me softly: a pathogen accelerates fruit ripening and softening to cause disease. Plant Physiology, v. 191, n. Ja 2023, p. 21–23, 2023Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiac469. Acesso em: 17 out. 2024.
    • APA

      Cesarino, I. (2023). Killing me softly: a pathogen accelerates fruit ripening and softening to cause disease. Plant Physiology, 191( Ja 2023), 21–23. doi:10.1093/plphys/kiac469
    • NLM

      Cesarino I. Killing me softly: a pathogen accelerates fruit ripening and softening to cause disease [Internet]. Plant Physiology. 2023 ; 191( Ja 2023): 21–23.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac469
    • Vancouver

      Cesarino I. Killing me softly: a pathogen accelerates fruit ripening and softening to cause disease [Internet]. Plant Physiology. 2023 ; 191( Ja 2023): 21–23.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac469
  • Source: Plant Physiology. Unidade: IB

    Subjects: CAFÉ, LIGNINA, METABOLISMO VEGETAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Dyoni M e CESARINO, Igor. Four is better than one: structure and function of a unique ascorbate peroxidase with four binding sites. Plant Physiology, v. 192, n. 1, p. 4-6, 2023Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiad109. Acesso em: 17 out. 2024.
    • APA

      Oliveira, D. M., & Cesarino, I. (2023). Four is better than one: structure and function of a unique ascorbate peroxidase with four binding sites. Plant Physiology, 192( 1), 4-6. doi:10.1093/plphys/kiad109
    • NLM

      Oliveira DM, Cesarino I. Four is better than one: structure and function of a unique ascorbate peroxidase with four binding sites [Internet]. Plant Physiology. 2023 ; 192( 1): 4-6.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiad109
    • Vancouver

      Oliveira DM, Cesarino I. Four is better than one: structure and function of a unique ascorbate peroxidase with four binding sites [Internet]. Plant Physiology. 2023 ; 192( 1): 4-6.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiad109
  • Source: Plant Physiology. Unidade: IB

    Subjects: PAREDE CELULAR VEGETAL, LIGNINA, METABOLISMO VEGETAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YE, Yajin e CESARINO, Igor. A feast of consequences: transcriptional and metabolic responses to lignin pathway perturbations. Plant Physiology, v. 190, n. 4, p. 2090–2093, 2022Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiac414. Acesso em: 17 out. 2024.
    • APA

      Ye, Y., & Cesarino, I. (2022). A feast of consequences: transcriptional and metabolic responses to lignin pathway perturbations. Plant Physiology, 190( 4), 2090–2093. doi:10.1093/plphys/kiac414
    • NLM

      Ye Y, Cesarino I. A feast of consequences: transcriptional and metabolic responses to lignin pathway perturbations [Internet]. Plant Physiology. 2022 ; 190( 4): 2090–2093.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac414
    • Vancouver

      Ye Y, Cesarino I. A feast of consequences: transcriptional and metabolic responses to lignin pathway perturbations [Internet]. Plant Physiology. 2022 ; 190( 4): 2090–2093.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac414
  • Source: Plant Physiology. Unidade: IB

    Subjects: FOTOSSÍNTESE, METABOLISMO VEGETAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CESARINO, Igor. Going red but not mad: efficient astaxanthin production in tobacco without yield penalty. Plant Physiology, v. 188, n. Ja p. 35–37, 2022Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiab482. Acesso em: 17 out. 2024.
    • APA

      Cesarino, I. (2022). Going red but not mad: efficient astaxanthin production in tobacco without yield penalty. Plant Physiology, 188( Ja p. 35–37). doi:10.1093/plphys/kiab482
    • NLM

      Cesarino I. Going red but not mad: efficient astaxanthin production in tobacco without yield penalty [Internet]. Plant Physiology. 2022 ; 188( Ja p. 35–37):[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiab482
    • Vancouver

      Cesarino I. Going red but not mad: efficient astaxanthin production in tobacco without yield penalty [Internet]. Plant Physiology. 2022 ; 188( Ja p. 35–37):[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiab482
  • Source: Plant Physiology. Unidade: IB

    Subjects: FOTOSSÍNTESE, METABOLISMO VEGETAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CESARINO, Igor. Better NOT together: single-cell transcriptomic landscape of leaf tissues. Plant Physiology, v. 188, n. Ja p. 680–682, 2022Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiab562. Acesso em: 17 out. 2024.
    • APA

      Cesarino, I. (2022). Better NOT together: single-cell transcriptomic landscape of leaf tissues. Plant Physiology, 188( Ja p. 680–682). doi:10.1093/plphys/kiab562
    • NLM

      Cesarino I. Better NOT together: single-cell transcriptomic landscape of leaf tissues [Internet]. Plant Physiology. 2022 ; 188( Ja p. 680–682):[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiab562
    • Vancouver

      Cesarino I. Better NOT together: single-cell transcriptomic landscape of leaf tissues [Internet]. Plant Physiology. 2022 ; 188( Ja p. 680–682):[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiab562
  • Source: Plant Physiology. Unidade: IB

    Subjects: PAREDE CELULAR VEGETAL, LIGNINA, METABOLISMO VEGETAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CESARINO, Igor. With a little help from MYB friends: transcriptional network controlling root suberization and lignification. Plant Physiology, 2022Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiac318. Acesso em: 17 out. 2024.
    • APA

      Cesarino, I. (2022). With a little help from MYB friends: transcriptional network controlling root suberization and lignification. Plant Physiology. doi:10.1093/plphys/kiac318
    • NLM

      Cesarino I. With a little help from MYB friends: transcriptional network controlling root suberization and lignification [Internet]. Plant Physiology. 2022 ;[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac318
    • Vancouver

      Cesarino I. With a little help from MYB friends: transcriptional network controlling root suberization and lignification [Internet]. Plant Physiology. 2022 ;[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac318
  • Source: Plant Physiology. Unidade: IB

    Subjects: LIGNINA, METABOLISMO VEGETAL, BIOTECNOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CESARINO, Igor. Yet another twist in lignin biosynthesis: is there a specific alcohol dehydrogenase for H-lignin production?. Plant Physiology, v. 189, n. 4, p. 1884–18861, 2022Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiac249. Acesso em: 17 out. 2024.
    • APA

      Cesarino, I. (2022). Yet another twist in lignin biosynthesis: is there a specific alcohol dehydrogenase for H-lignin production? Plant Physiology, 189( 4), 1884–18861. doi:10.1093/plphys/kiac249
    • NLM

      Cesarino I. Yet another twist in lignin biosynthesis: is there a specific alcohol dehydrogenase for H-lignin production? [Internet]. Plant Physiology. 2022 ; 189( 4): 1884–18861.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac249
    • Vancouver

      Cesarino I. Yet another twist in lignin biosynthesis: is there a specific alcohol dehydrogenase for H-lignin production? [Internet]. Plant Physiology. 2022 ; 189( 4): 1884–18861.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiac249
  • Source: Plant Physiology. Unidade: IB

    Subjects: PAREDE CELULAR VEGETAL, BAMBU

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CESARINO, Igor. Unraveling the regulatory network of bamboo lignification. Plant Physiology, v. 187, n. 2, p. 673–675, 2021Tradução . . Disponível em: https://doi.org/10.1093/plphys/kiab370. Acesso em: 17 out. 2024.
    • APA

      Cesarino, I. (2021). Unraveling the regulatory network of bamboo lignification. Plant Physiology, 187( 2), 673–675. doi:10.1093/plphys/kiab370
    • NLM

      Cesarino I. Unraveling the regulatory network of bamboo lignification [Internet]. Plant Physiology. 2021 ; 187( 2): 673–675.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiab370
    • Vancouver

      Cesarino I. Unraveling the regulatory network of bamboo lignification [Internet]. Plant Physiology. 2021 ; 187( 2): 673–675.[citado 2024 out. 17 ] Available from: https://doi.org/10.1093/plphys/kiab370
  • Source: Plant Physiology. Unidade: IB

    Subjects: BOTÂNICA (CLASSIFICAÇÃO), FISIOLOGIA VEGETAL, REGULADORES DE CRESCIMENTO VEGETAL, DESENVOLVIMENTO VEGETAL, MATURAÇÃO VEGETAL, TOMATE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIANCHETTI, Ricardo E et al. Phytochrome-dependent temperature perception modulates isoprenoid metabolism. Plant Physiology, v. 183, n. 1, 2020Tradução . . Disponível em: https://doi.org/10.1104/pp.20.00019. Acesso em: 17 out. 2024.
    • APA

      Bianchetti, R. E., De Luca, B., De Haro, L., Rosado, D., Demarco, D., Conte, M., et al. (2020). Phytochrome-dependent temperature perception modulates isoprenoid metabolism. Plant Physiology, 183( 1). doi:10.1104/pp.20.00019
    • NLM

      Bianchetti RE, De Luca B, De Haro L, Rosado D, Demarco D, Conte M, Bermúdez L, Freschi L, Fernie AR, Michaelson L, Haslam RP, Rossi M, Carrari F. Phytochrome-dependent temperature perception modulates isoprenoid metabolism [Internet]. Plant Physiology. 2020 ; 183( 1):[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.20.00019
    • Vancouver

      Bianchetti RE, De Luca B, De Haro L, Rosado D, Demarco D, Conte M, Bermúdez L, Freschi L, Fernie AR, Michaelson L, Haslam RP, Rossi M, Carrari F. Phytochrome-dependent temperature perception modulates isoprenoid metabolism [Internet]. Plant Physiology. 2020 ; 183( 1):[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.20.00019
  • Source: Plant Physiology. Unidade: IB

    Subjects: FISIOLOGIA VEGETAL, LIGNINA, PAREDE CELULAR VEGETAL, BIOMASSA, BIOCOMBUSTÍVEIS, POLISSACARÍDEOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ELOY, Nubia B et al. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, v. 173, n. 2, p. 998-1016, 2017Tradução . . Disponível em: https://doi.org/10.1104/pp.16.01108. Acesso em: 17 out. 2024.
    • APA

      Eloy, N. B., Voorend, W., Lan, W., Saleme, M. de L. S., Cesarino, I., Vanholme, R., et al. (2017). Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 173( 2), 998-1016. doi:10.1104/pp.16.01108
    • NLM

      Eloy NB, Voorend W, Lan W, Saleme M de LS, Cesarino I, Vanholme R, Smith RA, Goeminne G, Pallidis A, Morreel K, Nicomedes Jr. J, Ralph J, Boerjan W. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content [Internet]. Plant Physiology. 2017 ; 173( 2): 998-1016.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.16.01108
    • Vancouver

      Eloy NB, Voorend W, Lan W, Saleme M de LS, Cesarino I, Vanholme R, Smith RA, Goeminne G, Pallidis A, Morreel K, Nicomedes Jr. J, Ralph J, Boerjan W. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content [Internet]. Plant Physiology. 2017 ; 173( 2): 998-1016.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.16.01108
  • Source: Plant Physiology. Unidade: IQ

    Subjects: BIOQUÍMICA, FLUORESCÊNCIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABDUL-AWAL, S. M. et al. NO-Mediated ['CA POT. 2+'] IND. cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis. Plant Physiology, v. 171, n. 1, p. 623-631 : + Supplementary materials ( S1-S2), 2016Tradução . . Disponível em: https://doi.org/10.1104/pp.15.01965. Acesso em: 17 out. 2024.
    • APA

      Abdul-Awal, S. M., Hotta, C. T., Davey, M. P., Dodd, A. N., Smith, A. G., & Webb, A. A. R. (2016). NO-Mediated ['CA POT. 2+'] IND. cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis. Plant Physiology, 171( 1), 623-631 : + Supplementary materials ( S1-S2). doi:10.1104/pp.15.01965
    • NLM

      Abdul-Awal SM, Hotta CT, Davey MP, Dodd AN, Smith AG, Webb AAR. NO-Mediated ['CA POT. 2+'] IND. cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis [Internet]. Plant Physiology. 2016 ; 171( 1): 623-631 : + Supplementary materials ( S1-S2).[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.15.01965
    • Vancouver

      Abdul-Awal SM, Hotta CT, Davey MP, Dodd AN, Smith AG, Webb AAR. NO-Mediated ['CA POT. 2+'] IND. cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis [Internet]. Plant Physiology. 2016 ; 171( 1): 623-631 : + Supplementary materials ( S1-S2).[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.15.01965
  • Source: Plant Physiology. Unidade: IB

    Subjects: MUDANÇA CLIMÁTICA, SECA, METABOLISMO VEGETAL, METABÓLITOS, GRÃOS (PRODUÇÃO;QUALIDADE), SORGO, DIÓXIDO DE CARBONO (CONCENTRAÇÃO), BIOQUÍMICA VEGETAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Amanda P. De et al. Changes in Whole-Plant metabolism during the grain-filling stage in sorghum grown under elevated CO2 and drought. Plant Physiology, v. No 2015, n. 3, p. 1755-1765, 2015Tradução . . Disponível em: https://doi.org/10.1104/pp.15.01054. Acesso em: 17 out. 2024.
    • APA

      Souza, A. P. D., Cocuron, J. -C., Garcia, A. C., Alonso, A. P., & Buckeridge, M. (2015). Changes in Whole-Plant metabolism during the grain-filling stage in sorghum grown under elevated CO2 and drought. Plant Physiology, No 2015( 3), 1755-1765. doi:10.1104/pp.15.01054
    • NLM

      Souza APD, Cocuron J-C, Garcia AC, Alonso AP, Buckeridge M. Changes in Whole-Plant metabolism during the grain-filling stage in sorghum grown under elevated CO2 and drought [Internet]. Plant Physiology. 2015 ; No 2015( 3): 1755-1765.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.15.01054
    • Vancouver

      Souza APD, Cocuron J-C, Garcia AC, Alonso AP, Buckeridge M. Changes in Whole-Plant metabolism during the grain-filling stage in sorghum grown under elevated CO2 and drought [Internet]. Plant Physiology. 2015 ; No 2015( 3): 1755-1765.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.15.01054
  • Source: Plant Physiology. Unidade: IFSC

    Subjects: MICROALGAS, VITAMINAS, REGULAÇÃO GÊNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELLIWELL, Katherine E. et al. Unraveling vitamin B12-responsive gene regulation in Algae. Plant Physiology, v. 165, n. 1, p. 388-397, 2014Tradução . . Disponível em: https://doi.org/10.1104/pp.113.234369. Acesso em: 17 out. 2024.
    • APA

      Helliwell, K. E., Scaife, M. A., Sasso, S., Araújo, A. P. U. de, Purton, S., & Smith, A. G. (2014). Unraveling vitamin B12-responsive gene regulation in Algae. Plant Physiology, 165( 1), 388-397. doi:10.1104/pp.113.234369
    • NLM

      Helliwell KE, Scaife MA, Sasso S, Araújo APU de, Purton S, Smith AG. Unraveling vitamin B12-responsive gene regulation in Algae [Internet]. Plant Physiology. 2014 ; 165( 1): 388-397.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.113.234369
    • Vancouver

      Helliwell KE, Scaife MA, Sasso S, Araújo APU de, Purton S, Smith AG. Unraveling vitamin B12-responsive gene regulation in Algae [Internet]. Plant Physiology. 2014 ; 165( 1): 388-397.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.113.234369
  • Source: Plant Physiology. Unidade: IQ

    Subjects: METAIS PESADOS, MICROALGAS, FLUORESCÊNCIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAJAMANI, Satish et al. Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor. Plant Physiology, v. 164, n. 2, p. 1059-1067, 2014Tradução . . Disponível em: https://doi.org/10.1104/pp.113.229765. Acesso em: 17 out. 2024.
    • APA

      Rajamani, S., Falcao, M. T., Gray, J. E., Coury, D. A., Colepicolo, P., & Sayre, R. (2014). Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor. Plant Physiology, 164( 2), 1059-1067. doi:10.1104/pp.113.229765
    • NLM

      Rajamani S, Falcao MT, Gray JE, Coury DA, Colepicolo P, Sayre R. Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor [Internet]. Plant Physiology. 2014 ; 164( 2): 1059-1067.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.113.229765
    • Vancouver

      Rajamani S, Falcao MT, Gray JE, Coury DA, Colepicolo P, Sayre R. Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor [Internet]. Plant Physiology. 2014 ; 164( 2): 1059-1067.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.113.229765
  • Source: Plant Physiology. Unidade: FCF

    Subjects: EXPRESSÃO GÊNICA, BIOLOGIA MOLECULAR

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARSAN, Cristina et al. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. Plant Physiology, v. 160, n. 2, p. 708-725, 2012Tradução . . Acesso em: 17 out. 2024.
    • APA

      Barsan, C., Zouine, M., Maza, E., Bian, W., Egea, I., Rossignol, M., et al. (2012). Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. Plant Physiology, 160( 2), 708-725.
    • NLM

      Barsan C, Zouine M, Maza E, Bian W, Egea I, Rossignol M, Bouyssie D, Pichereaux C, Purgatto E, Bouzayen M, Latche A, Pech J-C. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. Plant Physiology. 2012 ; 160( 2): 708-725.[citado 2024 out. 17 ]
    • Vancouver

      Barsan C, Zouine M, Maza E, Bian W, Egea I, Rossignol M, Bouyssie D, Pichereaux C, Purgatto E, Bouzayen M, Latche A, Pech J-C. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. Plant Physiology. 2012 ; 160( 2): 708-725.[citado 2024 out. 17 ]
  • Source: Plant Physiology. Unidade: IQ

    Subjects: GLICOSE, BIOQUÍMICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATIOLLI, Cleverson Carlos et al. The arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose 'signals POT. 1[W][OA]'. Plant Physiology, v. 157, n. 2, p. 692-705 : + Supplementary materials ( S1-S12), 2011Tradução . . Disponível em: https://doi.org/10.1104/pp.111.181743. Acesso em: 17 out. 2024.
    • APA

      Matiolli, C. C., Tomaz, J. P., Duarte, G. T., Prado, F. M., Bem, L. E. V. D., Silveira, A. B., et al. (2011). The arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose 'signals POT. 1[W][OA]'. Plant Physiology, 157( 2), 692-705 : + Supplementary materials ( S1-S12). doi:10.1104/pp.111.181743
    • NLM

      Matiolli CC, Tomaz JP, Duarte GT, Prado FM, Bem LEVD, Silveira AB, Gauer L, Corrêa LGG, Drumond RD, Viana AJC, Di Mascio P, Meyer C, Vincentz M. The arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose 'signals POT. 1[W][OA]' [Internet]. Plant Physiology. 2011 ; 157( 2): 692-705 : + Supplementary materials ( S1-S12).[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.111.181743
    • Vancouver

      Matiolli CC, Tomaz JP, Duarte GT, Prado FM, Bem LEVD, Silveira AB, Gauer L, Corrêa LGG, Drumond RD, Viana AJC, Di Mascio P, Meyer C, Vincentz M. The arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose 'signals POT. 1[W][OA]' [Internet]. Plant Physiology. 2011 ; 157( 2): 692-705 : + Supplementary materials ( S1-S12).[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.111.181743
  • Source: Plant Physiology. Unidade: IB

    Subjects: TOMATE, METABOLISMO, GENÉTICA VEGETAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUADRANA, Leandro et al. Coupling virus-induced gene silencing to exogenous green fluorescence protein expression provides a highly efficient system for functional genomics in Arabidopsis and across all stages of tomato fruit development. Plant Physiology, v. 156, n. 3, p. 1278-1291, 2011Tradução . . Disponível em: https://doi.org/10.1104/pp.111.177345. Acesso em: 17 out. 2024.
    • APA

      Quadrana, L., Rodriguez, M. C., López, M., Bermúdez, L., Nunes-Nesi, A., Fernie, A. R., et al. (2011). Coupling virus-induced gene silencing to exogenous green fluorescence protein expression provides a highly efficient system for functional genomics in Arabidopsis and across all stages of tomato fruit development. Plant Physiology, 156( 3), 1278-1291. doi:10.1104/pp.111.177345
    • NLM

      Quadrana L, Rodriguez MC, López M, Bermúdez L, Nunes-Nesi A, Fernie AR, Descalzo A, Asís R, Rossi M, Asurmendi S, Carrari F. Coupling virus-induced gene silencing to exogenous green fluorescence protein expression provides a highly efficient system for functional genomics in Arabidopsis and across all stages of tomato fruit development [Internet]. Plant Physiology. 2011 ; 156( 3): 1278-1291.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.111.177345
    • Vancouver

      Quadrana L, Rodriguez MC, López M, Bermúdez L, Nunes-Nesi A, Fernie AR, Descalzo A, Asís R, Rossi M, Asurmendi S, Carrari F. Coupling virus-induced gene silencing to exogenous green fluorescence protein expression provides a highly efficient system for functional genomics in Arabidopsis and across all stages of tomato fruit development [Internet]. Plant Physiology. 2011 ; 156( 3): 1278-1291.[citado 2024 out. 17 ] Available from: https://doi.org/10.1104/pp.111.177345

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024