Filtros : "Nonlinearity" "Financiamento FAPESP" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: ANÁLISE DE SÉRIES TEMPORAIS, ESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Tiago e SANTOS, Edmilson Roque dos e STRIEN, Sebastian van. Robust reconstruction of sparse network dynamics. Nonlinearity, v. 38, p. 1-41, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/add3b0. Acesso em: 12 nov. 2025.
    • APA

      Pereira, T., Santos, E. R. dos, & Strien, S. van. (2025). Robust reconstruction of sparse network dynamics. Nonlinearity, 38, 1-41. doi:10.1088/1361-6544/add3b0
    • NLM

      Pereira T, Santos ER dos, Strien S van. Robust reconstruction of sparse network dynamics [Internet]. Nonlinearity. 2025 ; 38 1-41.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/add3b0
    • Vancouver

      Pereira T, Santos ER dos, Strien S van. Robust reconstruction of sparse network dynamics [Internet]. Nonlinearity. 2025 ; 38 1-41.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/add3b0
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TEOREMAS LIMITES, ANÁLISE HARMÔNICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, v. 38, n. 8, p. 082001-1-082001-40, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/adf0dd. Acesso em: 12 nov. 2025.
    • APA

      Smania, D. (2025). A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, 38( 8), 082001-1-082001-40. doi:10.1088/1361-6544/adf0dd
    • NLM

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
    • Vancouver

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Xiao-Chuan e TAL, Fábio Armando. On non-contractible periodic orbits and bounded deviations. Nonlinearity, v. 37, n. artigo 075007, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad4948. Acesso em: 12 nov. 2025.
    • APA

      Liu, X. -C., & Tal, F. A. (2024). On non-contractible periodic orbits and bounded deviations. Nonlinearity, 37( artigo 075007), 1-26. doi:10.1088/1361-6544/ad4948
    • NLM

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
    • Vancouver

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS, SIMETRIA, MECÂNICA ESTATÍSTICA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMORIM, Tiago de Albuquerque e MANOEL, Miriam Garcia. The realisation of admissible graphs for coupled vector fields. Nonlinearity, v. 37, n. Ja 2024, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad0ca4. Acesso em: 12 nov. 2025.
    • APA

      Amorim, T. de A., & Manoel, M. G. (2024). The realisation of admissible graphs for coupled vector fields. Nonlinearity, 37( Ja 2024), 1-26. doi:10.1088/1361-6544/ad0ca4
    • NLM

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
    • Vancouver

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
  • Source: Nonlinearity. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUOIRIN, Humberto Ramos e SICILIANO, Gaetano e SILVA, Kaye. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, v. 37, n. artigo 065010, p. 1-41, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad39dd. Acesso em: 12 nov. 2025.
    • APA

      Quoirin, H. R., Siciliano, G., & Silva, K. (2024). Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, 37( artigo 065010), 1-41. doi:10.1088/1361-6544/ad39dd
    • NLM

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
    • Vancouver

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, HIPÉRBOLE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RONGE, R e ZAKS, M. A e PEREIRA, Tiago. Continua and persistence of periodic orbits in ensembles of oscillators. Nonlinearity, v. 37, p. 1-33, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad2f5f. Acesso em: 12 nov. 2025.
    • APA

      Ronge, R., Zaks, M. A., & Pereira, T. (2024). Continua and persistence of periodic orbits in ensembles of oscillators. Nonlinearity, 37, 1-33. doi:10.1088/1361-6544/ad2f5f
    • NLM

      Ronge R, Zaks MA, Pereira T. Continua and persistence of periodic orbits in ensembles of oscillators [Internet]. Nonlinearity. 2024 ; 37 1-33.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad2f5f
    • Vancouver

      Ronge R, Zaks MA, Pereira T. Continua and persistence of periodic orbits in ensembles of oscillators [Internet]. Nonlinearity. 2024 ; 37 1-33.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad2f5f
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NUNES, Pollyanna Vicente e TAL, Fábio Armando. Transitivity and the existence of horseshoes on the 2-torus. Nonlinearity, v. 36, n. 1, p. 199-230, 2023Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aca252. Acesso em: 12 nov. 2025.
    • APA

      Nunes, P. V., & Tal, F. A. (2023). Transitivity and the existence of horseshoes on the 2-torus. Nonlinearity, 36( 1), 199-230. doi:10.1088/1361-6544/aca252
    • NLM

      Nunes PV, Tal FA. Transitivity and the existence of horseshoes on the 2-torus [Internet]. Nonlinearity. 2023 ; 36( 1): 199-230.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/aca252
    • Vancouver

      Nunes PV, Tal FA. Transitivity and the existence of horseshoes on the 2-torus [Internet]. Nonlinearity. 2023 ; 36( 1): 199-230.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/aca252
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 12 nov. 2025.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATA, Salvador Addas e LIU, Xiao-Chuan. On stable and unstable behaviour of certain rotation segments. Nonlinearity, v. 35, n. 11, p. 5813-5851, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac8f0d. Acesso em: 12 nov. 2025.
    • APA

      Zanata, S. A., & Liu, X. -C. (2022). On stable and unstable behaviour of certain rotation segments. Nonlinearity, 35( 11), 5813-5851. doi:10.1088/1361-6544/ac8f0d
    • NLM

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d
    • Vancouver

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Edson de e GUARINO, Pablo. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps*. Nonlinearity, v. 34, n. 10, p. 6727-6749, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac1a02. Acesso em: 12 nov. 2025.
    • APA

      Faria, E. de, & Guarino, P. (2021). There are no σ-finite absolutely continuous invariant measures for multicritical circle maps*. Nonlinearity, 34( 10), 6727-6749. doi:10.1088/1361-6544/ac1a02
    • NLM

      Faria E de, Guarino P. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps* [Internet]. Nonlinearity. 2021 ; 34( 10): 6727-6749.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac1a02
    • Vancouver

      Faria E de, Guarino P. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps* [Internet]. Nonlinearity. 2021 ; 34( 10): 6727-6749.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac1a02
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Unstable entropy in smooth ergodic theory. Nonlinearity, v. 34, n. 8, p. R75-R118, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abd7c7. Acesso em: 12 nov. 2025.
    • APA

      Tahzibi, A. (2021). Unstable entropy in smooth ergodic theory. Nonlinearity, 34( 8), R75-R118. doi:10.1088/1361-6544/abd7c7
    • NLM

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
    • Vancouver

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: REDES COMPLEXAS, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ELDERING, Jaap et al. Chimera states through invariant manifold theory. Nonlinearity, v. 34, n. 8, p. 5344-5374, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac0613. Acesso em: 12 nov. 2025.
    • APA

      Eldering, J., Lamb, J. S. W., Pereira, T., & Santos, E. R. dos. (2021). Chimera states through invariant manifold theory. Nonlinearity, 34( 8), 5344-5374. doi:10.1088/1361-6544/ac0613
    • NLM

      Eldering J, Lamb JSW, Pereira T, Santos ER dos. Chimera states through invariant manifold theory [Internet]. Nonlinearity. 2021 ; 34( 8): 5344-5374.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac0613
    • Vancouver

      Eldering J, Lamb JSW, Pereira T, Santos ER dos. Chimera states through invariant manifold theory [Internet]. Nonlinearity. 2021 ; 34( 8): 5344-5374.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac0613
  • Source: Nonlinearity. Unidade: IME

    Subjects: TEORIA ERGÓDICA DA MEDIDA, DINÂMICA SIMBÓLICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELTRÁN, Elmer R e BISSACOT, Rodrigo e ENDO, Eric Ossami. Infinite DLR measures and volume-type phase transitions on countable Markov shifts. Nonlinearity, v. 34, n. 7, p. 4819-4843, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abf84d. Acesso em: 12 nov. 2025.
    • APA

      Beltrán, E. R., Bissacot, R., & Endo, E. O. (2021). Infinite DLR measures and volume-type phase transitions on countable Markov shifts. Nonlinearity, 34( 7), 4819-4843. doi:10.1088/1361-6544/abf84d
    • NLM

      Beltrán ER, Bissacot R, Endo EO. Infinite DLR measures and volume-type phase transitions on countable Markov shifts [Internet]. Nonlinearity. 2021 ; 34( 7): 4819-4843.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/abf84d
    • Vancouver

      Beltrán ER, Bissacot R, Endo EO. Infinite DLR measures and volume-type phase transitions on countable Markov shifts [Internet]. Nonlinearity. 2021 ; 34( 7): 4819-4843.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/abf84d

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025