Filtros : "Nonlinearity" "2024" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Xiao-Chuan e TAL, Fábio Armando. On non-contractible periodic orbits and bounded deviations. Nonlinearity, v. 37, n. artigo 075007, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad4948. Acesso em: 12 nov. 2025.
    • APA

      Liu, X. -C., & Tal, F. A. (2024). On non-contractible periodic orbits and bounded deviations. Nonlinearity, 37( artigo 075007), 1-26. doi:10.1088/1361-6544/ad4948
    • NLM

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
    • Vancouver

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS, SIMETRIA, MECÂNICA ESTATÍSTICA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMORIM, Tiago de Albuquerque e MANOEL, Miriam Garcia. The realisation of admissible graphs for coupled vector fields. Nonlinearity, v. 37, n. Ja 2024, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad0ca4. Acesso em: 12 nov. 2025.
    • APA

      Amorim, T. de A., & Manoel, M. G. (2024). The realisation of admissible graphs for coupled vector fields. Nonlinearity, 37( Ja 2024), 1-26. doi:10.1088/1361-6544/ad0ca4
    • NLM

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
    • Vancouver

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
  • Source: Nonlinearity. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUOIRIN, Humberto Ramos e SICILIANO, Gaetano e SILVA, Kaye. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, v. 37, n. artigo 065010, p. 1-41, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad39dd. Acesso em: 12 nov. 2025.
    • APA

      Quoirin, H. R., Siciliano, G., & Silva, K. (2024). Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, 37( artigo 065010), 1-41. doi:10.1088/1361-6544/ad39dd
    • NLM

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
    • Vancouver

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
  • Source: Nonlinearity. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES NÃO LINEARES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, MECÂNICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo. Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, v. 37, n. artigo 045015, p. 1-43, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad2eba. Acesso em: 12 nov. 2025.
    • APA

      Pava, J. A. (2024). Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, 37( artigo 045015), 1-43. doi:10.1088/1361-6544/ad2eba
    • NLM

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
    • Vancouver

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, HIPÉRBOLE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RONGE, R e ZAKS, M. A e PEREIRA, Tiago. Continua and persistence of periodic orbits in ensembles of oscillators. Nonlinearity, v. 37, p. 1-33, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad2f5f. Acesso em: 12 nov. 2025.
    • APA

      Ronge, R., Zaks, M. A., & Pereira, T. (2024). Continua and persistence of periodic orbits in ensembles of oscillators. Nonlinearity, 37, 1-33. doi:10.1088/1361-6544/ad2f5f
    • NLM

      Ronge R, Zaks MA, Pereira T. Continua and persistence of periodic orbits in ensembles of oscillators [Internet]. Nonlinearity. 2024 ; 37 1-33.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad2f5f
    • Vancouver

      Ronge R, Zaks MA, Pereira T. Continua and persistence of periodic orbits in ensembles of oscillators [Internet]. Nonlinearity. 2024 ; 37 1-33.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad2f5f

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025