Filtros : "Nonlinearity" "2022" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 12 nov. 2025.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
  • Source: Nonlinearity. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. The p-Laplacian in thin channels with locally periodic roughness and different scales. Nonlinearity, v. 35, p. 2474–2512, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac62e0. Acesso em: 12 nov. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2022). The p-Laplacian in thin channels with locally periodic roughness and different scales. Nonlinearity, 35, 2474–2512. doi:10.1088/1361-6544/ac62e0
    • NLM

      Nakasato JC, Pereira MC. The p-Laplacian in thin channels with locally periodic roughness and different scales [Internet]. Nonlinearity. 2022 ; 35 2474–2512.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac62e0
    • Vancouver

      Nakasato JC, Pereira MC. The p-Laplacian in thin channels with locally periodic roughness and different scales [Internet]. Nonlinearity. 2022 ; 35 2474–2512.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac62e0
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRACHT, Sören von der e NIJHOUT, Eddie e RINK, Bob. Amplified steady state bifurcations in feedforward networks. Nonlinearity, v. 35, n. 4, p. 2073-2120, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac5463. Acesso em: 12 nov. 2025.
    • APA

      Gracht, S. von der, Nijhout, E., & Rink, B. (2022). Amplified steady state bifurcations in feedforward networks. Nonlinearity, 35( 4), 2073-2120. doi:10.1088/1361-6544/ac5463
    • NLM

      Gracht S von der, Nijhout E, Rink B. Amplified steady state bifurcations in feedforward networks [Internet]. Nonlinearity. 2022 ; 35( 4): 2073-2120.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac5463
    • Vancouver

      Gracht S von der, Nijhout E, Rink B. Amplified steady state bifurcations in feedforward networks [Internet]. Nonlinearity. 2022 ; 35( 4): 2073-2120.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac5463
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATA, Salvador Addas e LIU, Xiao-Chuan. On stable and unstable behaviour of certain rotation segments. Nonlinearity, v. 35, n. 11, p. 5813-5851, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac8f0d. Acesso em: 12 nov. 2025.
    • APA

      Zanata, S. A., & Liu, X. -C. (2022). On stable and unstable behaviour of certain rotation segments. Nonlinearity, 35( 11), 5813-5851. doi:10.1088/1361-6544/ac8f0d
    • NLM

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d
    • Vancouver

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025