Filtros : "Nonlinearity" "Tahzibi, Ali" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Unstable entropy in smooth ergodic theory. Nonlinearity, v. 34, n. 8, p. R75-R118, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abd7c7. Acesso em: 13 nov. 2025.
    • APA

      Tahzibi, A. (2021). Unstable entropy in smooth ergodic theory. Nonlinearity, 34( 8), R75-R118. doi:10.1088/1361-6544/abd7c7
    • NLM

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
    • Vancouver

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISOSTOMO, Jorge e TAHZIBI, Ali. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, v. 32, n. 2, p. 584-602, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aaec98. Acesso em: 13 nov. 2025.
    • APA

      Crisostomo, J., & Tahzibi, A. (2019). Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, 32( 2), 584-602. doi:10.1088/1361-6544/aaec98
    • NLM

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
    • Vancouver

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, F e TAHZIBI, Ali. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, v. 26, n. 4, p. 1071-1082, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/4/1071. Acesso em: 13 nov. 2025.
    • APA

      Micena, F., & Tahzibi, A. (2013). Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, 26( 4), 1071-1082. doi:10.1088/0951-7715/26/4/1071
    • NLM

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
    • Vancouver

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, Federico Rodriguez et al. Creation of blenders in the conservative setting. Nonlinearity, v. 23, n. 2, p. 211-223, 2010Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/23/2/001. Acesso em: 13 nov. 2025.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2010). Creation of blenders in the conservative setting. Nonlinearity, 23( 2), 211-223. doi:10.1088/0951-7715/23/2/001
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Creation of blenders in the conservative setting [Internet]. Nonlinearity. 2010 ; 23( 2): 211-223.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/0951-7715/23/2/001
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Creation of blenders in the conservative setting [Internet]. Nonlinearity. 2010 ; 23( 2): 211-223.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/0951-7715/23/2/001
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Vitor e TAHZIBI, Ali. Stochastic stability at the boundary of expanding maps. Nonlinearity, v. 18, p. 939-958, 2005Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/18/3/001. Acesso em: 13 nov. 2025.
    • APA

      Araujo, V., & Tahzibi, A. (2005). Stochastic stability at the boundary of expanding maps. Nonlinearity, 18, 939-958. doi:10.1088/0951-7715/18/3/001
    • NLM

      Araujo V, Tahzibi A. Stochastic stability at the boundary of expanding maps [Internet]. Nonlinearity. 2005 ; 18 939-958.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/0951-7715/18/3/001
    • Vancouver

      Araujo V, Tahzibi A. Stochastic stability at the boundary of expanding maps [Internet]. Nonlinearity. 2005 ; 18 939-958.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/0951-7715/18/3/001

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025