Filtros : "Nonlinearity" "Smania, Daniel" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TEOREMAS LIMITES, ANÁLISE HARMÔNICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, v. 38, n. 8, p. 082001-1-082001-40, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/adf0dd. Acesso em: 12 nov. 2025.
    • APA

      Smania, D. (2025). A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, 38( 8), 082001-1-082001-40. doi:10.1088/1361-6544/adf0dd
    • NLM

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
    • Vancouver

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
  • Source: Nonlinearity. Unidade: ICMC

    Assunto: SISTEMAS DINÂMICOS HOLOMORFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIQUEIRA, Carlos e SMANIA, Daniel. Holomorphic motions for unicritical correspondences. Nonlinearity, v. 30, n. 8, p. 3104-3125, 2017Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aa7736. Acesso em: 12 nov. 2025.
    • APA

      Siqueira, C., & Smania, D. (2017). Holomorphic motions for unicritical correspondences. Nonlinearity, 30( 8), 3104-3125. doi:10.1088/1361-6544/aa7736
    • NLM

      Siqueira C, Smania D. Holomorphic motions for unicritical correspondences [Internet]. Nonlinearity. 2017 ; 30( 8): 3104-3125.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/aa7736
    • Vancouver

      Siqueira C, Smania D. Holomorphic motions for unicritical correspondences [Internet]. Nonlinearity. 2017 ; 30( 8): 3104-3125.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/aa7736
  • Source: Nonlinearity. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALADI, Viviane e SMANIA, Daniel. Linear response formula for piecewise expanding unimodal maps. Nonlinearity, v. 21, n. 4, p. 677-711, 2008Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/21/4/003. Acesso em: 12 nov. 2025.
    • APA

      Baladi, V., & Smania, D. (2008). Linear response formula for piecewise expanding unimodal maps. Nonlinearity, 21( 4), 677-711. doi:10.1088/0951-7715/21/4/003
    • NLM

      Baladi V, Smania D. Linear response formula for piecewise expanding unimodal maps [Internet]. Nonlinearity. 2008 ; 21( 4): 677-711.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/21/4/003
    • Vancouver

      Baladi V, Smania D. Linear response formula for piecewise expanding unimodal maps [Internet]. Nonlinearity. 2008 ; 21( 4): 677-711.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/21/4/003

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025