Filtros : "Nonlinearity" "Brasil" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: IME

    Assunto: ESTATÍSTICA E PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Pedro e BARROS, Matheus e LIMA, Yuri Gomes. Pólya urns on hypergraphs. Nonlinearity, v. 38, n. 7, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/addbbc. Acesso em: 14 nov. 2025.
    • APA

      Alves, P., Barros, M., & Lima, Y. G. (2025). Pólya urns on hypergraphs. Nonlinearity, 38( 7). doi:10.1088/1361-6544/addbbc
    • NLM

      Alves P, Barros M, Lima YG. Pólya urns on hypergraphs [Internet]. Nonlinearity. 2025 ; 38( 7):[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/addbbc
    • Vancouver

      Alves P, Barros M, Lima YG. Pólya urns on hypergraphs [Internet]. Nonlinearity. 2025 ; 38( 7):[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/addbbc
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Xiao-Chuan e TAL, Fábio Armando. On non-contractible periodic orbits and bounded deviations. Nonlinearity, v. 37, n. artigo 075007, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad4948. Acesso em: 14 nov. 2025.
    • APA

      Liu, X. -C., & Tal, F. A. (2024). On non-contractible periodic orbits and bounded deviations. Nonlinearity, 37( artigo 075007), 1-26. doi:10.1088/1361-6544/ad4948
    • NLM

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
    • Vancouver

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
  • Source: Nonlinearity. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUOIRIN, Humberto Ramos e SICILIANO, Gaetano e SILVA, Kaye. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, v. 37, n. artigo 065010, p. 1-41, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad39dd. Acesso em: 14 nov. 2025.
    • APA

      Quoirin, H. R., Siciliano, G., & Silva, K. (2024). Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, 37( artigo 065010), 1-41. doi:10.1088/1361-6544/ad39dd
    • NLM

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
    • Vancouver

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 14 nov. 2025.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATA, Salvador Addas e LIU, Xiao-Chuan. On stable and unstable behaviour of certain rotation segments. Nonlinearity, v. 35, n. 11, p. 5813-5851, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac8f0d. Acesso em: 14 nov. 2025.
    • APA

      Zanata, S. A., & Liu, X. -C. (2022). On stable and unstable behaviour of certain rotation segments. Nonlinearity, 35( 11), 5813-5851. doi:10.1088/1361-6544/ac8f0d
    • NLM

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d
    • Vancouver

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Edson de e GUARINO, Pablo. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps*. Nonlinearity, v. 34, n. 10, p. 6727-6749, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac1a02. Acesso em: 14 nov. 2025.
    • APA

      Faria, E. de, & Guarino, P. (2021). There are no σ-finite absolutely continuous invariant measures for multicritical circle maps*. Nonlinearity, 34( 10), 6727-6749. doi:10.1088/1361-6544/ac1a02
    • NLM

      Faria E de, Guarino P. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps* [Internet]. Nonlinearity. 2021 ; 34( 10): 6727-6749.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ac1a02
    • Vancouver

      Faria E de, Guarino P. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps* [Internet]. Nonlinearity. 2021 ; 34( 10): 6727-6749.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ac1a02
  • Source: Nonlinearity. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e CAVALCANTE, Márcio. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, v. 34, n. 5, p. 3373-3410, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abea6b. Acesso em: 14 nov. 2025.
    • APA

      Pava, J. A., & Cavalcante, M. (2021). Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, 34( 5), 3373-3410. doi:10.1088/1361-6544/abea6b
    • NLM

      Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/abea6b
    • Vancouver

      Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/abea6b
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROCHE, Rita de Cássia Dornelas Sodré e CARVALHO, Alexandre Nolasco de e VALERO, José. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics. Nonlinearity, v. 32, n. 12, p. 4912-4941, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab3f55. Acesso em: 14 nov. 2025.
    • APA

      Broche, R. de C. D. S., Carvalho, A. N. de, & Valero, J. (2019). A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics. Nonlinearity, 32( 12), 4912-4941. doi:10.1088/1361-6544/ab3f55
    • NLM

      Broche R de CDS, Carvalho AN de, Valero J. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics [Internet]. Nonlinearity. 2019 ; 32( 12): 4912-4941.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ab3f55
    • Vancouver

      Broche R de CDS, Carvalho AN de, Valero J. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics [Internet]. Nonlinearity. 2019 ; 32( 12): 4912-4941.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/1361-6544/ab3f55
  • Source: Nonlinearity. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FISHER, Albert Meads e LOPES, Artur Oscar. Exact bounds for the polynomial decay of correlation 1/f noise and the CLT for the equilibrium state of a non-Holder potential. Nonlinearity, v. 14, n. 4, p. 1071-1104, 2001Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/14/5/310. Acesso em: 14 nov. 2025.
    • APA

      Fisher, A. M., & Lopes, A. O. (2001). Exact bounds for the polynomial decay of correlation 1/f noise and the CLT for the equilibrium state of a non-Holder potential. Nonlinearity, 14( 4), 1071-1104. doi:10.1088/0951-7715/14/5/310
    • NLM

      Fisher AM, Lopes AO. Exact bounds for the polynomial decay of correlation 1/f noise and the CLT for the equilibrium state of a non-Holder potential [Internet]. Nonlinearity. 2001 ; 14( 4): 1071-1104.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/0951-7715/14/5/310
    • Vancouver

      Fisher AM, Lopes AO. Exact bounds for the polynomial decay of correlation 1/f noise and the CLT for the equilibrium state of a non-Holder potential [Internet]. Nonlinearity. 2001 ; 14( 4): 1071-1104.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1088/0951-7715/14/5/310

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025