Filtros : "Nonlinearity" "TEORIA ERGÓDICA" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TEOREMAS LIMITES, ANÁLISE HARMÔNICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, v. 38, n. 8, p. 082001-1-082001-40, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/adf0dd. Acesso em: 12 nov. 2025.
    • APA

      Smania, D. (2025). A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, 38( 8), 082001-1-082001-40. doi:10.1088/1361-6544/adf0dd
    • NLM

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
    • Vancouver

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Xiao-Chuan e TAL, Fábio Armando. On non-contractible periodic orbits and bounded deviations. Nonlinearity, v. 37, n. artigo 075007, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad4948. Acesso em: 12 nov. 2025.
    • APA

      Liu, X. -C., & Tal, F. A. (2024). On non-contractible periodic orbits and bounded deviations. Nonlinearity, 37( artigo 075007), 1-26. doi:10.1088/1361-6544/ad4948
    • NLM

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
    • Vancouver

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
  • Source: Nonlinearity. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES NÃO LINEARES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, MECÂNICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo. Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, v. 37, n. artigo 045015, p. 1-43, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad2eba. Acesso em: 12 nov. 2025.
    • APA

      Pava, J. A. (2024). Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, 37( artigo 045015), 1-43. doi:10.1088/1361-6544/ad2eba
    • NLM

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
    • Vancouver

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NUNES, Pollyanna Vicente e TAL, Fábio Armando. Transitivity and the existence of horseshoes on the 2-torus. Nonlinearity, v. 36, n. 1, p. 199-230, 2023Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aca252. Acesso em: 12 nov. 2025.
    • APA

      Nunes, P. V., & Tal, F. A. (2023). Transitivity and the existence of horseshoes on the 2-torus. Nonlinearity, 36( 1), 199-230. doi:10.1088/1361-6544/aca252
    • NLM

      Nunes PV, Tal FA. Transitivity and the existence of horseshoes on the 2-torus [Internet]. Nonlinearity. 2023 ; 36( 1): 199-230.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/aca252
    • Vancouver

      Nunes PV, Tal FA. Transitivity and the existence of horseshoes on the 2-torus [Internet]. Nonlinearity. 2023 ; 36( 1): 199-230.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/aca252
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATA, Salvador Addas e LIU, Xiao-Chuan. On stable and unstable behaviour of certain rotation segments. Nonlinearity, v. 35, n. 11, p. 5813-5851, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac8f0d. Acesso em: 12 nov. 2025.
    • APA

      Zanata, S. A., & Liu, X. -C. (2022). On stable and unstable behaviour of certain rotation segments. Nonlinearity, 35( 11), 5813-5851. doi:10.1088/1361-6544/ac8f0d
    • NLM

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d
    • Vancouver

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Edson de e GUARINO, Pablo. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps*. Nonlinearity, v. 34, n. 10, p. 6727-6749, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac1a02. Acesso em: 12 nov. 2025.
    • APA

      Faria, E. de, & Guarino, P. (2021). There are no σ-finite absolutely continuous invariant measures for multicritical circle maps*. Nonlinearity, 34( 10), 6727-6749. doi:10.1088/1361-6544/ac1a02
    • NLM

      Faria E de, Guarino P. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps* [Internet]. Nonlinearity. 2021 ; 34( 10): 6727-6749.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac1a02
    • Vancouver

      Faria E de, Guarino P. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps* [Internet]. Nonlinearity. 2021 ; 34( 10): 6727-6749.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/ac1a02
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Unstable entropy in smooth ergodic theory. Nonlinearity, v. 34, n. 8, p. R75-R118, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abd7c7. Acesso em: 12 nov. 2025.
    • APA

      Tahzibi, A. (2021). Unstable entropy in smooth ergodic theory. Nonlinearity, 34( 8), R75-R118. doi:10.1088/1361-6544/abd7c7
    • NLM

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
    • Vancouver

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISOSTOMO, Jorge e TAHZIBI, Ali. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, v. 32, n. 2, p. 584-602, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aaec98. Acesso em: 12 nov. 2025.
    • APA

      Crisostomo, J., & Tahzibi, A. (2019). Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, 32( 2), 584-602. doi:10.1088/1361-6544/aaec98
    • NLM

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
    • Vancouver

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANOEL, Miriam Garcia e ROBERTS, Mark. Gradient systems on coupled cell networks. Nonlinearity, v. 28, n. 10, p. 3487-3509, 2015Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/28/10/3487. Acesso em: 12 nov. 2025.
    • APA

      Manoel, M. G., & Roberts, M. (2015). Gradient systems on coupled cell networks. Nonlinearity, 28( 10), 3487-3509. doi:10.1088/0951-7715/28/10/3487
    • NLM

      Manoel MG, Roberts M. Gradient systems on coupled cell networks [Internet]. Nonlinearity. 2015 ; 28( 10): 3487-3509.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/28/10/3487
    • Vancouver

      Manoel MG, Roberts M. Gradient systems on coupled cell networks [Internet]. Nonlinearity. 2015 ; 28( 10): 3487-3509.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/28/10/3487
  • Source: Nonlinearity. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e LAMBERT, Rodrigo. The distribution of the short-return function. Nonlinearity, v. 26, n. 5, p. 1143-1162, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/5/1143. Acesso em: 12 nov. 2025.
    • APA

      Abadi, M. N., & Lambert, R. (2013). The distribution of the short-return function. Nonlinearity, 26( 5), 1143-1162. doi:10.1088/0951-7715/26/5/1143
    • NLM

      Abadi MN, Lambert R. The distribution of the short-return function [Internet]. Nonlinearity. 2013 ; 26( 5): 1143-1162.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/26/5/1143
    • Vancouver

      Abadi MN, Lambert R. The distribution of the short-return function [Internet]. Nonlinearity. 2013 ; 26( 5): 1143-1162.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/26/5/1143
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, F e TAHZIBI, Ali. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, v. 26, n. 4, p. 1071-1082, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/4/1071. Acesso em: 12 nov. 2025.
    • APA

      Micena, F., & Tahzibi, A. (2013). Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, 26( 4), 1071-1082. doi:10.1088/0951-7715/26/4/1071
    • NLM

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
    • Vancouver

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, Federico Rodriguez et al. Creation of blenders in the conservative setting. Nonlinearity, v. 23, n. 2, p. 211-223, 2010Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/23/2/001. Acesso em: 12 nov. 2025.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2010). Creation of blenders in the conservative setting. Nonlinearity, 23( 2), 211-223. doi:10.1088/0951-7715/23/2/001
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Creation of blenders in the conservative setting [Internet]. Nonlinearity. 2010 ; 23( 2): 211-223.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/23/2/001
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Creation of blenders in the conservative setting [Internet]. Nonlinearity. 2010 ; 23( 2): 211-223.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/23/2/001
  • Source: Nonlinearity. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAL, Fábio Armando e ADDAS-ZANATA, Salvador. Maximizing measures for endomorphisms of the circle. Nonlinearity, v. 21, n. 10, p. 2347-2359, 2008Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/21/10/008. Acesso em: 12 nov. 2025.
    • APA

      Tal, F. A., & Addas-Zanata, S. (2008). Maximizing measures for endomorphisms of the circle. Nonlinearity, 21( 10), 2347-2359. doi:10.1088/0951-7715/21/10/008
    • NLM

      Tal FA, Addas-Zanata S. Maximizing measures for endomorphisms of the circle [Internet]. Nonlinearity. 2008 ; 21( 10): 2347-2359.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/21/10/008
    • Vancouver

      Tal FA, Addas-Zanata S. Maximizing measures for endomorphisms of the circle [Internet]. Nonlinearity. 2008 ; 21( 10): 2347-2359.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/21/10/008
  • Source: Nonlinearity. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALADI, Viviane e SMANIA, Daniel. Linear response formula for piecewise expanding unimodal maps. Nonlinearity, v. 21, n. 4, p. 677-711, 2008Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/21/4/003. Acesso em: 12 nov. 2025.
    • APA

      Baladi, V., & Smania, D. (2008). Linear response formula for piecewise expanding unimodal maps. Nonlinearity, 21( 4), 677-711. doi:10.1088/0951-7715/21/4/003
    • NLM

      Baladi V, Smania D. Linear response formula for piecewise expanding unimodal maps [Internet]. Nonlinearity. 2008 ; 21( 4): 677-711.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/21/4/003
    • Vancouver

      Baladi V, Smania D. Linear response formula for piecewise expanding unimodal maps [Internet]. Nonlinearity. 2008 ; 21( 4): 677-711.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/21/4/003
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Vitor e TAHZIBI, Ali. Stochastic stability at the boundary of expanding maps. Nonlinearity, v. 18, p. 939-958, 2005Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/18/3/001. Acesso em: 12 nov. 2025.
    • APA

      Araujo, V., & Tahzibi, A. (2005). Stochastic stability at the boundary of expanding maps. Nonlinearity, 18, 939-958. doi:10.1088/0951-7715/18/3/001
    • NLM

      Araujo V, Tahzibi A. Stochastic stability at the boundary of expanding maps [Internet]. Nonlinearity. 2005 ; 18 939-958.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/18/3/001
    • Vancouver

      Araujo V, Tahzibi A. Stochastic stability at the boundary of expanding maps [Internet]. Nonlinearity. 2005 ; 18 939-958.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/18/3/001
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA TOPOLÓGICA, DINÂMICA SIMBÓLICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, André Salles de e HALL, Toby. Conjugacies between horseshoe braids. Nonlinearity, v. 16, n. 4, p. 1329-1338, 2003Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/16/4/308. Acesso em: 12 nov. 2025.
    • APA

      Carvalho, A. S. de, & Hall, T. (2003). Conjugacies between horseshoe braids. Nonlinearity, 16( 4), 1329-1338. doi:10.1088/0951-7715/16/4/308
    • NLM

      Carvalho AS de, Hall T. Conjugacies between horseshoe braids [Internet]. Nonlinearity. 2003 ; 16( 4): 1329-1338.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/16/4/308
    • Vancouver

      Carvalho AS de, Hall T. Conjugacies between horseshoe braids [Internet]. Nonlinearity. 2003 ; 16( 4): 1329-1338.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1088/0951-7715/16/4/308

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025