Filtros : "Nonlinearity" "EQUAÇÕES NÃO LINEARES" Limpar

Filtros



Limitar por data


  • Fonte: Nonlinearity. Unidade: IME

    Assuntos: SOLITONS, EQUAÇÕES NÃO LINEARES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, MECÂNICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo. Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, v. 37, n. artigo 045015, p. 1-43, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad2eba. Acesso em: 13 nov. 2025.
    • APA

      Pava, J. A. (2024). Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, 37( artigo 045015), 1-43. doi:10.1088/1361-6544/ad2eba
    • NLM

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
    • Vancouver

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
  • Fonte: Nonlinearity. Unidade: IME

    Assuntos: EQUAÇÕES NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e BRANGO, Carlos Banquet. Orbital stability for the periodic Zakharov system. Nonlinearity, v. 24, n. 10, p. 2913-2932, 2011Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/24/10/013. Acesso em: 13 nov. 2025.
    • APA

      Pava, J. A., & Brango, C. B. (2011). Orbital stability for the periodic Zakharov system. Nonlinearity, 24( 10), 2913-2932. doi:10.1088/0951-7715/24/10/013
    • NLM

      Pava JA, Brango CB. Orbital stability for the periodic Zakharov system [Internet]. Nonlinearity. 2011 ; 24( 10): 2913-2932.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/0951-7715/24/10/013
    • Vancouver

      Pava JA, Brango CB. Orbital stability for the periodic Zakharov system [Internet]. Nonlinearity. 2011 ; 24( 10): 2913-2932.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1088/0951-7715/24/10/013

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025