Filtros : "Nonlinear Dynamics" "2020" Limpar

Filtros



Limitar por data


  • Fonte: Nonlinear Dynamics. Unidade: FFCLRP

    Assuntos: HIV, SINGULARIDADES, MODELOS MATEMÁTICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de et al. Global analysis of the dynamics of a mathematical model to intermittent HIV treatment. Nonlinear Dynamics, v. 101, p. 719-739, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11071-020-05775-4. Acesso em: 11 nov. 2025.
    • APA

      Carvalho, T. de, Cristiano, R., Gonçalves, L. F., & Tonon, D. J. (2020). Global analysis of the dynamics of a mathematical model to intermittent HIV treatment. Nonlinear Dynamics, 101, 719-739. doi:10.1007/s11071-020-05775-4
    • NLM

      Carvalho T de, Cristiano R, Gonçalves LF, Tonon DJ. Global analysis of the dynamics of a mathematical model to intermittent HIV treatment [Internet]. Nonlinear Dynamics. 2020 ; 101 719-739.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05775-4
    • Vancouver

      Carvalho T de, Cristiano R, Gonçalves LF, Tonon DJ. Global analysis of the dynamics of a mathematical model to intermittent HIV treatment [Internet]. Nonlinear Dynamics. 2020 ; 101 719-739.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05775-4
  • Fonte: Nonlinear Dynamics. Unidade: FFCLRP

    Assuntos: CAOS (SISTEMAS DINÂMICOS), SISTEMAS DIFERENCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e NOVAES, Douglas Duarte e GONÇALVES, Luiz Fernando. Sliding Shilnikov connection in Filippov-type predator–prey model. Nonlinear Dynamics, v. 100, n. 3, p. 2973-2987, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11071-020-05672-w. Acesso em: 11 nov. 2025.
    • APA

      Carvalho, T. de, Novaes, D. D., & Gonçalves, L. F. (2020). Sliding Shilnikov connection in Filippov-type predator–prey model. Nonlinear Dynamics, 100( 3), 2973-2987. doi:10.1007/s11071-020-05672-w
    • NLM

      Carvalho T de, Novaes DD, Gonçalves LF. Sliding Shilnikov connection in Filippov-type predator–prey model [Internet]. Nonlinear Dynamics. 2020 ; 100( 3): 2973-2987.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05672-w
    • Vancouver

      Carvalho T de, Novaes DD, Gonçalves LF. Sliding Shilnikov connection in Filippov-type predator–prey model [Internet]. Nonlinear Dynamics. 2020 ; 100( 3): 2973-2987.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05672-w
  • Fonte: Nonlinear Dynamics. Unidade: EP

    Assuntos: MODELOS MATEMÁTICOS, MECÂNICA APLICADA, SISTEMAS DINÂMICOS, EQUAÇÕES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORSINO, Renato Maia Matarazzo. Extended constraint enforcement formulations for finite-DOF systems based on gauss’s principle of least constraint. Nonlinear Dynamics, v. 101, n. 4, p. 2577-2597, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11071-020-05924-9. Acesso em: 11 nov. 2025.
    • APA

      Orsino, R. M. M. (2020). Extended constraint enforcement formulations for finite-DOF systems based on gauss’s principle of least constraint. Nonlinear Dynamics, 101( 4), 2577-2597. doi:10.1007/s11071-020-05924-9
    • NLM

      Orsino RMM. Extended constraint enforcement formulations for finite-DOF systems based on gauss’s principle of least constraint [Internet]. Nonlinear Dynamics. 2020 ; 101( 4): 2577-2597.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05924-9
    • Vancouver

      Orsino RMM. Extended constraint enforcement formulations for finite-DOF systems based on gauss’s principle of least constraint [Internet]. Nonlinear Dynamics. 2020 ; 101( 4): 2577-2597.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05924-9
  • Fonte: Nonlinear Dynamics. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, REDES COMPLEXAS, NEURÔNIOS, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NJOUGOUO, Thierry et al. Dynamics of Rössler oscillators in a star network with the central node controlled by an external system. Nonlinear Dynamics, v. 102, n. 4, p. 2875-2885, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11071-020-06047-x. Acesso em: 11 nov. 2025.
    • APA

      Njougouo, T., Simo, G. R., Louodop, P., Ferreira, F. F., & Talla, P. K. (2020). Dynamics of Rössler oscillators in a star network with the central node controlled by an external system. Nonlinear Dynamics, 102( 4), 2875-2885. doi:10.1007/s11071-020-06047-x
    • NLM

      Njougouo T, Simo GR, Louodop P, Ferreira FF, Talla PK. Dynamics of Rössler oscillators in a star network with the central node controlled by an external system [Internet]. Nonlinear Dynamics. 2020 ; 102( 4): 2875-2885.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-06047-x
    • Vancouver

      Njougouo T, Simo GR, Louodop P, Ferreira FF, Talla PK. Dynamics of Rössler oscillators in a star network with the central node controlled by an external system [Internet]. Nonlinear Dynamics. 2020 ; 102( 4): 2875-2885.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-06047-x

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025