Filtros : "Nonlinear Dynamics" "Brasil" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Dynamics. Unidade: IFSC

    Subjects: INFERÊNCIA BAYESIANA, SURTOS DE DOENÇAS, COVID-19, CORONAVIRUS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRANDA, João Pedro Valeriano et al. Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting. Nonlinear Dynamics, v. 111, n. Ja 2023, p. 549-558 + supplementary information: 1-31, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11071-022-07865-x. Acesso em: 11 nov. 2025.
    • APA

      Miranda, J. P. V., Cintra, P. H. P., Libotte, G. B., Reis, I., Fontinele, F., Silva, R. S., & Malta, S. M. C. (2023). Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting. Nonlinear Dynamics, 111( Ja 2023), 549-558 + supplementary information: 1-31. doi:10.1007/s11071-022-07865-x
    • NLM

      Miranda JPV, Cintra PHP, Libotte GB, Reis I, Fontinele F, Silva RS, Malta SMC. Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting [Internet]. Nonlinear Dynamics. 2023 ; 111( Ja 2023): 549-558 + supplementary information: 1-31.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-022-07865-x
    • Vancouver

      Miranda JPV, Cintra PHP, Libotte GB, Reis I, Fontinele F, Silva RS, Malta SMC. Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting [Internet]. Nonlinear Dynamics. 2023 ; 111( Ja 2023): 549-558 + supplementary information: 1-31.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-022-07865-x
  • Source: Nonlinear Dynamics. Unidade: EESC

    Subjects: ENERGIA, PIEZOELETRICIDADE, ENGENHARIA MECÂNICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NORENBERG, João Pedro et al. Correction to: Probabilistic maps on bistable vibration energy harvesters. Nonlinear Dynamics, v. 111, p. 20841, 2023Tradução . . Disponível em: http://dx.doi.org/10.1007/s11071-023-08974-x. Acesso em: 11 nov. 2025.
    • APA

      Norenberg, J. P., Cunha Junior, A., Silva, S. da, & Varoto, P. S. (2023). Correction to: Probabilistic maps on bistable vibration energy harvesters. Nonlinear Dynamics, 111, 20841. doi:10.1007/s11071-023-08974-x
    • NLM

      Norenberg JP, Cunha Junior A, Silva S da, Varoto PS. Correction to: Probabilistic maps on bistable vibration energy harvesters [Internet]. Nonlinear Dynamics. 2023 ; 111 20841.[citado 2025 nov. 11 ] Available from: http://dx.doi.org/10.1007/s11071-023-08974-x
    • Vancouver

      Norenberg JP, Cunha Junior A, Silva S da, Varoto PS. Correction to: Probabilistic maps on bistable vibration energy harvesters [Internet]. Nonlinear Dynamics. 2023 ; 111 20841.[citado 2025 nov. 11 ] Available from: http://dx.doi.org/10.1007/s11071-023-08974-x
  • Source: Nonlinear Dynamics. Unidade: EESC

    Subjects: ENERGIA, PIEZOELETRICIDADE, ENGENHARIA MECÂNICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NORENBERG, João Pedro et al. Probabilistic maps on bistable vibration energy harvesters. Nonlinear Dynamics, p. 1-20, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11071-023-08864-2. Acesso em: 11 nov. 2025.
    • APA

      Norenberg, J. P., Cunha Junior, A., Silva, S. da, & Varoto, P. S. (2023). Probabilistic maps on bistable vibration energy harvesters. Nonlinear Dynamics, 1-20. doi:10.1007/s11071-023-08864-2
    • NLM

      Norenberg JP, Cunha Junior A, Silva S da, Varoto PS. Probabilistic maps on bistable vibration energy harvesters [Internet]. Nonlinear Dynamics. 2023 ; 1-20.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-023-08864-2
    • Vancouver

      Norenberg JP, Cunha Junior A, Silva S da, Varoto PS. Probabilistic maps on bistable vibration energy harvesters [Internet]. Nonlinear Dynamics. 2023 ; 1-20.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-023-08864-2
  • Source: Nonlinear Dynamics. Unidade: FFCLRP

    Subjects: VETORES, TEORIA DA BIFURCAÇÃO, COVID-19, MODELOS EPIDEMIOLOGICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de et al. Global analysis of a piecewise smooth epidemiological model of COVID-19. Nonlinear Dynamics, v. 105, n. 4, p. 3763-3773, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11071-021-06801-9. Acesso em: 11 nov. 2025.
    • APA

      Carvalho, T. de, Cristiano, R., Rodrigues, D. S., & Tonon, D. J. (2021). Global analysis of a piecewise smooth epidemiological model of COVID-19. Nonlinear Dynamics, 105( 4), 3763-3773. doi:10.1007/s11071-021-06801-9
    • NLM

      Carvalho T de, Cristiano R, Rodrigues DS, Tonon DJ. Global analysis of a piecewise smooth epidemiological model of COVID-19 [Internet]. Nonlinear Dynamics. 2021 ; 105( 4): 3763-3773.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-021-06801-9
    • Vancouver

      Carvalho T de, Cristiano R, Rodrigues DS, Tonon DJ. Global analysis of a piecewise smooth epidemiological model of COVID-19 [Internet]. Nonlinear Dynamics. 2021 ; 105( 4): 3763-3773.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-021-06801-9
  • Source: Nonlinear Dynamics. Unidade: FFCLRP

    Subjects: HIV, SINGULARIDADES, MODELOS MATEMÁTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de et al. Global analysis of the dynamics of a mathematical model to intermittent HIV treatment. Nonlinear Dynamics, v. 101, p. 719-739, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11071-020-05775-4. Acesso em: 11 nov. 2025.
    • APA

      Carvalho, T. de, Cristiano, R., Gonçalves, L. F., & Tonon, D. J. (2020). Global analysis of the dynamics of a mathematical model to intermittent HIV treatment. Nonlinear Dynamics, 101, 719-739. doi:10.1007/s11071-020-05775-4
    • NLM

      Carvalho T de, Cristiano R, Gonçalves LF, Tonon DJ. Global analysis of the dynamics of a mathematical model to intermittent HIV treatment [Internet]. Nonlinear Dynamics. 2020 ; 101 719-739.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05775-4
    • Vancouver

      Carvalho T de, Cristiano R, Gonçalves LF, Tonon DJ. Global analysis of the dynamics of a mathematical model to intermittent HIV treatment [Internet]. Nonlinear Dynamics. 2020 ; 101 719-739.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05775-4
  • Source: Nonlinear Dynamics. Unidade: FFCLRP

    Subjects: CAOS (SISTEMAS DINÂMICOS), SISTEMAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e NOVAES, Douglas Duarte e GONÇALVES, Luiz Fernando. Sliding Shilnikov connection in Filippov-type predator–prey model. Nonlinear Dynamics, v. 100, n. 3, p. 2973-2987, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11071-020-05672-w. Acesso em: 11 nov. 2025.
    • APA

      Carvalho, T. de, Novaes, D. D., & Gonçalves, L. F. (2020). Sliding Shilnikov connection in Filippov-type predator–prey model. Nonlinear Dynamics, 100( 3), 2973-2987. doi:10.1007/s11071-020-05672-w
    • NLM

      Carvalho T de, Novaes DD, Gonçalves LF. Sliding Shilnikov connection in Filippov-type predator–prey model [Internet]. Nonlinear Dynamics. 2020 ; 100( 3): 2973-2987.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05672-w
    • Vancouver

      Carvalho T de, Novaes DD, Gonçalves LF. Sliding Shilnikov connection in Filippov-type predator–prey model [Internet]. Nonlinear Dynamics. 2020 ; 100( 3): 2973-2987.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-020-05672-w
  • Source: Nonlinear Dynamics. Unidade: ICMC

    Subjects: TEORIA DA BIFURCAÇÃO, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEREU, Ana C e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila A. B. Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems. Nonlinear Dynamics, v. 93, n. 4, p. Se 2018, 2018Tradução . . Disponível em: https://doi.org/10.1007/s11071-018-4319-6. Acesso em: 11 nov. 2025.
    • APA

      Mereu, A. C., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2018). Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems. Nonlinear Dynamics, 93( 4), Se 2018. doi:10.1007/s11071-018-4319-6
    • NLM

      Mereu AC, Oliveira RD dos S, Rodrigues CAB. Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems [Internet]. Nonlinear Dynamics. 2018 ; 93( 4): Se 2018.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-018-4319-6
    • Vancouver

      Mereu AC, Oliveira RD dos S, Rodrigues CAB. Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems [Internet]. Nonlinear Dynamics. 2018 ; 93( 4): Se 2018.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s11071-018-4319-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025