Filtros : "Journal of Mathematical Analysis and Applications" "LOPES, PEDRO TAVARES PAES" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES, ATRATORES, MECÂNICA ESTATÍSTICA, ESPAÇOS DE SOBOLEV

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e ROIDOS, Nikolaos. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities. Journal of Mathematical Analysis and Applications, v. 531, n. 2, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127851. Acesso em: 15 nov. 2025.
    • APA

      Lopes, P. T. P., & Roidos, N. (2024). Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities. Journal of Mathematical Analysis and Applications, 531( 2). doi:10.1016/j.jmaa.2023.127851
    • NLM

      Lopes PTP, Roidos N. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2):[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127851
    • Vancouver

      Lopes PTP, Roidos N. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2):[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127851
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e PEREIRA, Marcone Corrêa. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, v. 465, n. 1, p. 379-402, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.05.015. Acesso em: 15 nov. 2025.
    • APA

      Lopes, P. T. P., & Pereira, M. C. (2018). Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, 465( 1), 379-402. doi:10.1016/j.jmaa.2018.05.015
    • NLM

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
    • Vancouver

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2018.05.015

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025