Filtros : "Journal of Mathematical Analysis and Applications" "ESPAÇOS DE BANACH" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2. Journal of Mathematical Analysis and Applications, v. 541, n. artigo 128715, p. 1-15, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128715. Acesso em: 16 nov. 2025.
    • APA

      Galego, E. M. (2025). The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2. Journal of Mathematical Analysis and Applications, 541( artigo 128715), 1-15. doi:10.1016/j.jmaa.2024.128715
    • NLM

      Galego EM. The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2 [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 541( artigo 128715): 1-15.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128715
    • Vancouver

      Galego EM. The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2 [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 541( artigo 128715): 1-15.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128715
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 16 nov. 2025.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e RINCON-VILLAMIZAR, Michael A. On positive embeddings of C(K) spaces into C(S,X) lattices. Journal of Mathematical Analysis and Applications, v. 467, n. 2, p. 1287-1296, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.08.003. Acesso em: 16 nov. 2025.
    • APA

      Galego, E. M., & Rincon-Villamizar, M. A. (2018). On positive embeddings of C(K) spaces into C(S,X) lattices. Journal of Mathematical Analysis and Applications, 467( 2), 1287-1296. doi:10.1016/j.jmaa.2018.08.003
    • NLM

      Galego EM, Rincon-Villamizar MA. On positive embeddings of C(K) spaces into C(S,X) lattices [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 467( 2): 1287-1296.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2018.08.003
    • Vancouver

      Galego EM, Rincon-Villamizar MA. On positive embeddings of C(K) spaces into C(S,X) lattices [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 467( 2): 1287-1296.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2018.08.003
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: ANÁLISE HARMÔNICA EM GRUPOS DE LIE, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana e GALEGO, Eloi Medina e GONZÁLEZ, Manuel. Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications, v. 446, n. 1, p. 299-306, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2016.08.057. Acesso em: 16 nov. 2025.
    • APA

      Cely, L., Galego, E. M., & González, M. (2017). Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications, 446( 1), 299-306. doi:10.1016/j.jmaa.2016.08.057
    • NLM

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2016.08.057
    • Vancouver

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2016.08.057
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: ANÁLISE FUNCIONAL, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e RINCÓN-VILLAMIZAR, Michael A. When do the Banach lattices C([0,α],X) determine the ordinal intervals [0,α]?. Journal of Mathematical Analysis and Applications, v. 443, n. 2, p. 1362-1369, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2016.06.022. Acesso em: 16 nov. 2025.
    • APA

      Galego, E. M., & Rincón-Villamizar, M. A. (2016). When do the Banach lattices C([0,α],X) determine the ordinal intervals [0,α]? Journal of Mathematical Analysis and Applications, 443( 2), 1362-1369. doi:10.1016/j.jmaa.2016.06.022
    • NLM

      Galego EM, Rincón-Villamizar MA. When do the Banach lattices C([0,α],X) determine the ordinal intervals [0,α]? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 443( 2): 1362-1369.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2016.06.022
    • Vancouver

      Galego EM, Rincón-Villamizar MA. When do the Banach lattices C([0,α],X) determine the ordinal intervals [0,α]? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 443( 2): 1362-1369.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2016.06.022
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e RINCÓN VILLAMIZAR, Michael Alexander. When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R?. Journal of Mathematical Analysis and Applications, v. 437, n. 1, p. 590-604, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2016.01.025. Acesso em: 16 nov. 2025.
    • APA

      Galego, E. M., & Rincón Villamizar, M. A. (2016). When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? Journal of Mathematical Analysis and Applications, 437( 1), 590-604. doi:10.1016/j.jmaa.2016.01.025
    • NLM

      Galego EM, Rincón Villamizar MA. When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 437( 1): 590-604.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2016.01.025
    • Vancouver

      Galego EM, Rincón Villamizar MA. When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 437( 1): 590-604.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2016.01.025
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIDRAL, Fabiano Carlos e GALEGO, Eloi Medina e RINCÓN VILLAMIZAR, Michael Alexander. Optimal extensions of the Banach–Stone theorem. Journal of Mathematical Analysis and Applications, v. 430, n. 1, p. 193–204, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.04.060. Acesso em: 16 nov. 2025.
    • APA

      Cidral, F. C., Galego, E. M., & Rincón Villamizar, M. A. (2015). Optimal extensions of the Banach–Stone theorem. Journal of Mathematical Analysis and Applications, 430( 1), 193–204. doi:10.1016/j.jmaa.2015.04.060
    • NLM

      Cidral FC, Galego EM, Rincón Villamizar MA. Optimal extensions of the Banach–Stone theorem [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 430( 1): 193–204.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.060
    • Vancouver

      Cidral FC, Galego EM, Rincón Villamizar MA. Optimal extensions of the Banach–Stone theorem [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 430( 1): 193–204.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.060
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e ZAHN, Maurício. On the isomorphic classification of C(K, X) spaces. Journal of Mathematical Analysis and Applications, v. 01 No 2015, n. 1, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.05.080. Acesso em: 16 nov. 2025.
    • APA

      Galego, E. M., & Zahn, M. (2015). On the isomorphic classification of C(K, X) spaces. Journal of Mathematical Analysis and Applications, 01 No 2015( 1). doi:10.1016/j.jmaa.2015.05.080
    • NLM

      Galego EM, Zahn M. On the isomorphic classification of C(K, X) spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 01 No 2015( 1):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.05.080
    • Vancouver

      Galego EM, Zahn M. On the isomorphic classification of C(K, X) spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 01 No 2015( 1):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.05.080
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, Claudia e TAUSK, Daniel Victor. On the c0-extension property for compact lines. Journal of Mathematical Analysis and Applications, v. 428, n. 1, p. 184-193, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.03.022. Acesso em: 16 nov. 2025.
    • APA

      Correa, C., & Tausk, D. V. (2015). On the c0-extension property for compact lines. Journal of Mathematical Analysis and Applications, 428( 1), 184-193. doi:10.1016/j.jmaa.2015.03.022
    • NLM

      Correa C, Tausk DV. On the c0-extension property for compact lines [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 1): 184-193.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.022
    • Vancouver

      Correa C, Tausk DV. On the c0-extension property for compact lines [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 1): 184-193.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.022
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. The C(K,X) spaces for compact metric spaces K and X with a uniformly convex maximal factor. Journal of Mathematical Analysis and Applications, v. 384, n. 2, p. 357-365, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2011.05.068. Acesso em: 16 nov. 2025.
    • APA

      Galego, E. M. (2011). The C(K,X) spaces for compact metric spaces K and X with a uniformly convex maximal factor. Journal of Mathematical Analysis and Applications, 384( 2), 357-365. doi:10.1016/j.jmaa.2011.05.068
    • NLM

      Galego EM. The C(K,X) spaces for compact metric spaces K and X with a uniformly convex maximal factor [Internet]. Journal of Mathematical Analysis and Applications. 2011 ; 384( 2): 357-365.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2011.05.068
    • Vancouver

      Galego EM. The C(K,X) spaces for compact metric spaces K and X with a uniformly convex maximal factor [Internet]. Journal of Mathematical Analysis and Applications. 2011 ; 384( 2): 357-365.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2011.05.068
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: FUNÇÕES PERIÓDICAS, PROBLEMA DE CAUCHY, ESPAÇOS DE BANACH, OPERADORES LINEARES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENRIQUEZ, Hernán R e PIERRI, Michelle e TABOAS, Placido Zoega. On S-asymptotically ω-periodic functions on Banach spaces and applications. Journal of Mathematical Analysis and Applications, v. 343, n. 2, p. 1119-1130, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2008.02.023. Acesso em: 16 nov. 2025.
    • APA

      Henriquez, H. R., Pierri, M., & Taboas, P. Z. (2008). On S-asymptotically ω-periodic functions on Banach spaces and applications. Journal of Mathematical Analysis and Applications, 343( 2), 1119-1130. doi:10.1016/j.jmaa.2008.02.023
    • NLM

      Henriquez HR, Pierri M, Taboas PZ. On S-asymptotically ω-periodic functions on Banach spaces and applications [Internet]. Journal of Mathematical Analysis and Applications. 2008 ; 343( 2): 1119-1130.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2008.02.023
    • Vancouver

      Henriquez HR, Pierri M, Taboas PZ. On S-asymptotically ω-periodic functions on Banach spaces and applications [Internet]. Journal of Mathematical Analysis and Applications. 2008 ; 343( 2): 1119-1130.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2008.02.023

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025