Filtros : "Journal of Mathematical Analysis and Applications" "ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: PROBLEMAS DE VALORES INICIAIS, ESPAÇOS DE FRECHET, OPERADORES LINEARES, OPERADORES PSEUDODIFERENCIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis e SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, v. 484, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123612. Acesso em: 15 nov. 2025.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIDRAL, Fabiano Carlos e CÔRTES, Vinícius Morelli e GALEGO, Eloi Medina. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 12-20, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.01.009. Acesso em: 15 nov. 2025.
    • APA

      Cidral, F. C., Côrtes, V. M., & Galego, E. M. (2017). A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X. Journal of Mathematical Analysis and Applications, 450( 1), 12-20. doi:10.1016/j.jmaa.2017.01.009
    • NLM

      Cidral FC, Côrtes VM, Galego EM. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 12-20.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.009
    • Vancouver

      Cidral FC, Côrtes VM, Galego EM. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 12-20.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.009

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025