Filtros : "Journal of Data Science" "ICMC" Removido: "INFERÊNCIA ESTATÍSTICA" Limpar

Filtros



Refine with date range


  • Source: Journal of Data Science. Unidade: ICMC

    Subjects: MÉTODOS MCMC, ANÁLISE DE SÉRIES TEMPORAIS, COVID-19

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Marinho Gomes de et al. Time series regression models for COVID-19 deaths. Journal of Data Science, v. 19, n. 2, p. 269-292, 2021Tradução . . Disponível em: https://doi.org/10.6339/21-JDS991. Acesso em: 28 nov. 2025.
    • APA

      Andrade, M. G. de, Conceição, K. S., Achcar, J. A., & Ravishanker, N. (2021). Time series regression models for COVID-19 deaths. Journal of Data Science, 19( 2), 269-292. doi:10.6339/21-JDS991
    • NLM

      Andrade MG de, Conceição KS, Achcar JA, Ravishanker N. Time series regression models for COVID-19 deaths [Internet]. Journal of Data Science. 2021 ; 19( 2): 269-292.[citado 2025 nov. 28 ] Available from: https://doi.org/10.6339/21-JDS991
    • Vancouver

      Andrade MG de, Conceição KS, Achcar JA, Ravishanker N. Time series regression models for COVID-19 deaths [Internet]. Journal of Data Science. 2021 ; 19( 2): 269-292.[citado 2025 nov. 28 ] Available from: https://doi.org/10.6339/21-JDS991
  • Source: Journal of Data Science. Unidade: ICMC

    Subjects: DISTRIBUIÇÕES (PROBABILIDADE), VEROSSIMILHANÇA, REAMOSTRAGEM BOOTSTRAP

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS, Pedro Luiz e LOUZADA, Francisco e MOALA, Fernando Antonio. A two-parameter distribution with increasing and bathtub hazard rate. Journal of Data Science, v. 18, n. 4, p. 813-827, 2020Tradução . . Disponível em: https://doi.org/10.6339/JDS.202010_18(4)_0014. Acesso em: 28 nov. 2025.
    • APA

      Ramos, P. L., Louzada, F., & Moala, F. A. (2020). A two-parameter distribution with increasing and bathtub hazard rate. Journal of Data Science, 18( 4), 813-827. doi:10.6339/JDS.202010_18(4)_0014
    • NLM

      Ramos PL, Louzada F, Moala FA. A two-parameter distribution with increasing and bathtub hazard rate [Internet]. Journal of Data Science. 2020 ; 18( 4): 813-827.[citado 2025 nov. 28 ] Available from: https://doi.org/10.6339/JDS.202010_18(4)_0014
    • Vancouver

      Ramos PL, Louzada F, Moala FA. A two-parameter distribution with increasing and bathtub hazard rate [Internet]. Journal of Data Science. 2020 ; 18( 4): 813-827.[citado 2025 nov. 28 ] Available from: https://doi.org/10.6339/JDS.202010_18(4)_0014
  • Source: Journal of Data Science. Unidade: ICMC

    Subjects: ANÁLISE VARIACIONAL, INFERÊNCIA BAYESIANA, SIMULAÇÃO (ESTATÍSTICA)

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOUZADA, Francisco e FERREIRA, Paulo Henrique. On the classical estimation of bivariate copula-based Seemingly unrelated tobit models through the proposed inference function for augmented margins method. Journal of Data Science, v. 13, p. 771-794, 2015Tradução . . Disponível em: http://www.jds-online.com/volume-13-number-4-october-2015. Acesso em: 28 nov. 2025.
    • APA

      Louzada, F., & Ferreira, P. H. (2015). On the classical estimation of bivariate copula-based Seemingly unrelated tobit models through the proposed inference function for augmented margins method. Journal of Data Science, 13, 771-794. Recuperado de http://www.jds-online.com/volume-13-number-4-october-2015
    • NLM

      Louzada F, Ferreira PH. On the classical estimation of bivariate copula-based Seemingly unrelated tobit models through the proposed inference function for augmented margins method [Internet]. Journal of Data Science. 2015 ;13 771-794.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-13-number-4-october-2015
    • Vancouver

      Louzada F, Ferreira PH. On the classical estimation of bivariate copula-based Seemingly unrelated tobit models through the proposed inference function for augmented margins method [Internet]. Journal of Data Science. 2015 ;13 771-794.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-13-number-4-october-2015
  • Source: Journal of Data Science. Unidades: ESALQ, ICMC

    Subjects: DISTRIBUIÇÕES (PROBABILIDADE), REGRESSÃO LINEAR, ANÁLISE DE SOBREVIVÊNCIA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTEGA, Edwin Moises Marcos et al. A new class of survival regression models with cure fraction. Journal of Data Science, v. 24, p. 107-136, 2014Tradução . . Disponível em: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1053.7520&rep=rep1&type=pdf. Acesso em: 28 nov. 2025.
    • APA

      Ortega, E. M. M., Barriga, G. D. C., Hashimoto, E. M., Cancho, V. G., & Cordeiro, G. M. (2014). A new class of survival regression models with cure fraction. Journal of Data Science, 24, 107-136. doi:10.6339/JDS.2014.12(1).1152
    • NLM

      Ortega EMM, Barriga GDC, Hashimoto EM, Cancho VG, Cordeiro GM. A new class of survival regression models with cure fraction [Internet]. Journal of Data Science. 2014 ; 24 107-136.[citado 2025 nov. 28 ] Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1053.7520&rep=rep1&type=pdf
    • Vancouver

      Ortega EMM, Barriga GDC, Hashimoto EM, Cancho VG, Cordeiro GM. A new class of survival regression models with cure fraction [Internet]. Journal of Data Science. 2014 ; 24 107-136.[citado 2025 nov. 28 ] Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1053.7520&rep=rep1&type=pdf
  • Source: Journal of Data Science. Unidades: ICMC, IME

    Assunto: INFERÊNCIA BAYESIANA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMAN, Mari et al. A new long-term survival distribution for cancer data. Journal of Data Science, v. 10, n. 2, p. 241-258, 2012Tradução . . Disponível em: http://www.jds-online.com/volume-10-number-2-april-2012. Acesso em: 28 nov. 2025.
    • APA

      Roman, M., Louzada, F., Cancho, V. G., & Leite, J. G. (2012). A new long-term survival distribution for cancer data. Journal of Data Science, 10( 2), 241-258. Recuperado de http://www.jds-online.com/volume-10-number-2-april-2012
    • NLM

      Roman M, Louzada F, Cancho VG, Leite JG. A new long-term survival distribution for cancer data [Internet]. Journal of Data Science. 2012 ; 10( 2): 241-258.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-10-number-2-april-2012
    • Vancouver

      Roman M, Louzada F, Cancho VG, Leite JG. A new long-term survival distribution for cancer data [Internet]. Journal of Data Science. 2012 ; 10( 2): 241-258.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-10-number-2-april-2012
  • Source: Journal of Data Science. Unidades: ICMC, ESALQ, IME

    Subjects: INFERÊNCIA BAYESIANA, REGRESSÃO LINEAR

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANCHO, Vicente Garibay e ORTEGA, Edwin Moisés Marcos e BOLFARINE, Heleno. The log-exponentiated-weibull regression models with cure rate: local influence and residual analysis. Journal of Data Science, v. 7, n. 4, p. 433-458, 2009Tradução . . Disponível em: https://jds-online.org/journal/JDS/article/973/info. Acesso em: 28 nov. 2025.
    • APA

      Cancho, V. G., Ortega, E. M. M., & Bolfarine, H. (2009). The log-exponentiated-weibull regression models with cure rate: local influence and residual analysis. Journal of Data Science, 7( 4), 433-458. Recuperado de https://jds-online.org/journal/JDS/article/973/info
    • NLM

      Cancho VG, Ortega EMM, Bolfarine H. The log-exponentiated-weibull regression models with cure rate: local influence and residual analysis [Internet]. Journal of Data Science. 2009 ; 7( 4): 433-458.[citado 2025 nov. 28 ] Available from: https://jds-online.org/journal/JDS/article/973/info
    • Vancouver

      Cancho VG, Ortega EMM, Bolfarine H. The log-exponentiated-weibull regression models with cure rate: local influence and residual analysis [Internet]. Journal of Data Science. 2009 ; 7( 4): 433-458.[citado 2025 nov. 28 ] Available from: https://jds-online.org/journal/JDS/article/973/info

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025