Filtros : "Journal of Data Science" "2012" Removido: "LEANDRO, ROSELI APARECIDA" Limpar

Filtros



Refine with date range


  • Source: Journal of Data Science. Unidades: ICMC, IME

    Assunto: INFERÊNCIA BAYESIANA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMAN, Mari et al. A new long-term survival distribution for cancer data. Journal of Data Science, v. 10, n. 2, p. 241-258, 2012Tradução . . Disponível em: http://www.jds-online.com/volume-10-number-2-april-2012. Acesso em: 28 nov. 2025.
    • APA

      Roman, M., Louzada, F., Cancho, V. G., & Leite, J. G. (2012). A new long-term survival distribution for cancer data. Journal of Data Science, 10( 2), 241-258. Recuperado de http://www.jds-online.com/volume-10-number-2-april-2012
    • NLM

      Roman M, Louzada F, Cancho VG, Leite JG. A new long-term survival distribution for cancer data [Internet]. Journal of Data Science. 2012 ; 10( 2): 241-258.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-10-number-2-april-2012
    • Vancouver

      Roman M, Louzada F, Cancho VG, Leite JG. A new long-term survival distribution for cancer data [Internet]. Journal of Data Science. 2012 ; 10( 2): 241-258.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-10-number-2-april-2012
  • Source: Journal of Data Science. Unidade: ICMC

    Subjects: INFERÊNCIA BAYESIANA, ESTATÍSTICA APLICADA, INFERÊNCIA ESTATÍSTICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCHI, Vitor A. A. e ROJAS, Francisco A. R. e LOUZADA, Francisco. The chi-plot and its asymptotic confidence interval for analyzing bivariate dependence: an application to the average intelligence and atheism rates across nations data. Journal of Data Science, v. 10, n. 4, p. 711-722, 2012Tradução . . Disponível em: http://www.jds-online.com/volume-10-number-4-october-2012. Acesso em: 28 nov. 2025.
    • APA

      Marchi, V. A. A., Rojas, F. A. R., & Louzada, F. (2012). The chi-plot and its asymptotic confidence interval for analyzing bivariate dependence: an application to the average intelligence and atheism rates across nations data. Journal of Data Science, 10( 4), 711-722. Recuperado de http://www.jds-online.com/volume-10-number-4-october-2012
    • NLM

      Marchi VAA, Rojas FAR, Louzada F. The chi-plot and its asymptotic confidence interval for analyzing bivariate dependence: an application to the average intelligence and atheism rates across nations data [Internet]. Journal of Data Science. 2012 ; 10( 4): 711-722.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-10-number-4-october-2012
    • Vancouver

      Marchi VAA, Rojas FAR, Louzada F. The chi-plot and its asymptotic confidence interval for analyzing bivariate dependence: an application to the average intelligence and atheism rates across nations data [Internet]. Journal of Data Science. 2012 ; 10( 4): 711-722.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-10-number-4-october-2012
  • Source: Journal of Data Science. Unidade: ESALQ

    Subjects: DISTRIBUIÇÕES (PROBABILIDADE), VEROSSIMILHANÇA, MODELOS LINEARES GENERALIZADOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDEIRO, Gauss Moutinho e PESCIM, Rodrigo Rossetto e ORTEGA, Edwin Moises Marcos. The Kumaraswamy generalized half-normal distribution for skewed positive data. Journal of Data Science, v. 10, p. 195-224, 2012Tradução . . Disponível em: https://doi.org/10.6339/JDS.2012.10(2).1010. Acesso em: 28 nov. 2025.
    • APA

      Cordeiro, G. M., Pescim, R. R., & Ortega, E. M. M. (2012). The Kumaraswamy generalized half-normal distribution for skewed positive data. Journal of Data Science, 10, 195-224. doi:10.6339/JDS.2012.10(2).1010
    • NLM

      Cordeiro GM, Pescim RR, Ortega EMM. The Kumaraswamy generalized half-normal distribution for skewed positive data [Internet]. Journal of Data Science. 2012 ; 10 195-224.[citado 2025 nov. 28 ] Available from: https://doi.org/10.6339/JDS.2012.10(2).1010
    • Vancouver

      Cordeiro GM, Pescim RR, Ortega EMM. The Kumaraswamy generalized half-normal distribution for skewed positive data [Internet]. Journal of Data Science. 2012 ; 10 195-224.[citado 2025 nov. 28 ] Available from: https://doi.org/10.6339/JDS.2012.10(2).1010
  • Source: Journal of Data Science. Unidade: ICMC

    Subjects: INFERÊNCIA BAYESIANA, ESTATÍSTICA APLICADA, INFERÊNCIA ESTATÍSTICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOUZADA, Francisco et al. The long-term bivariate survival FGM copula model: an application to a brazilian HIV data. Journal of Data Science, v. 10, n. 3, p. 511-535, 2012Tradução . . Disponível em: http://www.jds-online.com/volume-10-number-3-july-2012. Acesso em: 28 nov. 2025.
    • APA

      Louzada, F., Suzuki, A. K., Cancho, V. G., Prince, F. L., & Pereira, G. de A. (2012). The long-term bivariate survival FGM copula model: an application to a brazilian HIV data. Journal of Data Science, 10( 3), 511-535. Recuperado de http://www.jds-online.com/volume-10-number-3-july-2012
    • NLM

      Louzada F, Suzuki AK, Cancho VG, Prince FL, Pereira G de A. The long-term bivariate survival FGM copula model: an application to a brazilian HIV data [Internet]. Journal of Data Science. 2012 ; 10( 3): 511-535.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-10-number-3-july-2012
    • Vancouver

      Louzada F, Suzuki AK, Cancho VG, Prince FL, Pereira G de A. The long-term bivariate survival FGM copula model: an application to a brazilian HIV data [Internet]. Journal of Data Science. 2012 ; 10( 3): 511-535.[citado 2025 nov. 28 ] Available from: http://www.jds-online.com/volume-10-number-3-july-2012

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025