Filtros : "Computational Optimization and Applications" "Holanda" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: OTIMIZAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e HAESER, Gabriel e MARTÍNEZ, José Mário. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications, v. 91, p. 491-509, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10589-024-00572-w. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., Haeser, G., & Martínez, J. M. (2025). Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications, 91, 491-509. doi:10.1007/s10589-024-00572-w
    • NLM

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2025 ; 91 491-509.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
    • Vancouver

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2025 ; 91 491-509.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: ANÁLISE CONVEXA, ÁLGEBRAS DE JORDAN

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Strong global convergence properties of algorithms for nonlinear symmetric cone programming. Computational Optimization and Applications, v. 91, p. 397-421, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10589-024-00642-z. Acesso em: 08 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Ramos, A., Santos, D. O., Secchin, L. D., & Serranoni, A. (2025). Strong global convergence properties of algorithms for nonlinear symmetric cone programming. Computational Optimization and Applications, 91, 397-421. doi:10.1007/s10589-024-00642-z
    • NLM

      Andreani R, Haeser G, Ramos A, Santos DO, Secchin LD, Serranoni A. Strong global convergence properties of algorithms for nonlinear symmetric cone programming [Internet]. Computational Optimization and Applications. 2025 ;91 397-421.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-024-00642-z
    • Vancouver

      Andreani R, Haeser G, Ramos A, Santos DO, Secchin LD, Serranoni A. Strong global convergence properties of algorithms for nonlinear symmetric cone programming [Internet]. Computational Optimization and Applications. 2025 ;91 397-421.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-024-00642-z
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: INTERPOLAÇÃO, MÉTODOS ITERATIVOS, APROXIMAÇÃO POR MÍNIMOS QUADRADOS, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, v. 81, p. 689–715, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00344-w. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, 81, 689–715. doi:10.1007/s10589-021-00344-w
    • NLM

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
    • Vancouver

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 08 nov. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Source: Computational Optimization and Applications. Unidade: ICMC

    Subjects: OTIMIZAÇÃO COMBINATÓRIA, PESQUISA OPERACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Alysson Machado e CORDEAU, Jean-François e GENDRON, Bernard. Benders, metric and cutset inequalities for multicommodity capacitated network design. Computational Optimization and Applications, v. 42, n. 3, p. 371-392, 2009Tradução . . Disponível em: https://doi.org/10.1007/s10589-007-9122-0. Acesso em: 08 nov. 2025.
    • APA

      Costa, A. M., Cordeau, J. -F., & Gendron, B. (2009). Benders, metric and cutset inequalities for multicommodity capacitated network design. Computational Optimization and Applications, 42( 3), 371-392. doi:10.1007/s10589-007-9122-0
    • NLM

      Costa AM, Cordeau J-F, Gendron B. Benders, metric and cutset inequalities for multicommodity capacitated network design [Internet]. Computational Optimization and Applications. 2009 ; 42( 3): 371-392.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-007-9122-0
    • Vancouver

      Costa AM, Cordeau J-F, Gendron B. Benders, metric and cutset inequalities for multicommodity capacitated network design [Internet]. Computational Optimization and Applications. 2009 ; 42( 3): 371-392.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-007-9122-0
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e CASTILLO, Romulo A e MARTINEZ, Jesus Manuel. Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Computational Optimization and Applications, v. 31, n. 1, p. 31-55, 2005Tradução . . Disponível em: https://doi.org/10.1007/s10589-005-1066-7. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., Castillo, R. A., & Martinez, J. M. (2005). Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Computational Optimization and Applications, 31( 1), 31-55. doi:10.1007/s10589-005-1066-7
    • NLM

      Birgin EJG, Castillo RA, Martinez JM. Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [Internet]. Computational Optimization and Applications. 2005 ; 31( 1): 31-55.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-005-1066-7
    • Vancouver

      Birgin EJG, Castillo RA, Martinez JM. Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [Internet]. Computational Optimization and Applications. 2005 ; 31( 1): 31-55.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-005-1066-7
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Large-scale active-set box-constrained optimization method with spectral projected gradients. Computational Optimization and Applications, v. 23, n. 1, p. 101-125, 2002Tradução . . Disponível em: https://doi.org/10.1023/A:1019928808826. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2002). Large-scale active-set box-constrained optimization method with spectral projected gradients. Computational Optimization and Applications, 23( 1), 101-125. doi:10.1023/A:1019928808826
    • NLM

      Birgin EJG, Martínez JM. Large-scale active-set box-constrained optimization method with spectral projected gradients [Internet]. Computational Optimization and Applications. 2002 ; 23( 1): 101-125.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1023/A:1019928808826
    • Vancouver

      Birgin EJG, Martínez JM. Large-scale active-set box-constrained optimization method with spectral projected gradients [Internet]. Computational Optimization and Applications. 2002 ; 23( 1): 101-125.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1023/A:1019928808826

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025