Filtros : "Communications in Mathematical Physics" "IME-MAP" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: SISTEMAS HAMILTONIANOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JÄGER, Tobias e KOROPECKI, Andres e TAL, Fábio Armando. On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, v. 383, p. 953-980, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-03995-2. Acesso em: 14 nov. 2025.
    • APA

      Jäger, T., Koropecki, A., & Tal, F. A. (2021). On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, 383, 953-980. doi:10.1007/s00220-021-03995-2
    • NLM

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
    • Vancouver

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, v. 363, n. 3, p. 767-788, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00220-018-3233-6. Acesso em: 14 nov. 2025.
    • APA

      Bissacot, R., Endo, E. O., van Enter, A. C. D., & Le Ny, A. (2018). Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, 363( 3), 767-788. doi:10.1007/s00220-018-3233-6
    • NLM

      Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00220-018-3233-6
    • Vancouver

      Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00220-018-3233-6
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, MODELO DE ISING

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, v. 337, n. 1, p. 41-53, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00220-014-2268-6. Acesso em: 14 nov. 2025.
    • APA

      Bissacot, R., Cassandro, M., Cioletti, L., & Presutti, E. (2015). Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, 337( 1), 41-53. doi:10.1007/s00220-014-2268-6
    • NLM

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
    • Vancouver

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e ROMERO, Sandro Vieira. Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, v. 256, n. 2, p. 375-410, 2005Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8. Acesso em: 14 nov. 2025.
    • APA

      Forger, F. M., & Romero, S. V. (2005). Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, 256( 2), 375-410. Recuperado de https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • NLM

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2025 nov. 14 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • Vancouver

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2025 nov. 14 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. On the stability of double homoclinic loops. Communications in Mathematical Physics, v. 184, p. 251-272, 1997Tradução . . Disponível em: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf. Acesso em: 14 nov. 2025.
    • APA

      Ragazzo, C. G. (1997). On the stability of double homoclinic loops. Communications in Mathematical Physics, 184, 251-272. Recuperado de https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
    • NLM

      Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2025 nov. 14 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
    • Vancouver

      Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2025 nov. 14 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
  • Source: Communications in Mathematical Physics. Unidades: IME, IF

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel e PEREZ, José Fernando. Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, n. 170, p. 21-39, 1995Tradução . . Disponível em: https://doi.org/10.1007/BF02099437. Acesso em: 14 nov. 2025.
    • APA

      Dreifus, H. von, Klein, A., & Perez, J. F. (1995). Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, ( 170), 21-39. doi:10.1007/BF02099437
    • NLM

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/BF02099437
    • Vancouver

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/BF02099437
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: TEORIA QUÂNTICA DE CAMPO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e LAARTZ, J e SCHÄPER, Ulrich. The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models. Communications in Mathematical Physics, v. 159, n. 2, p. 319-328, 1994Tradução . . Disponível em: https://doi.org/10.1007/bf02102641. Acesso em: 14 nov. 2025.
    • APA

      Forger, F. M., Laartz, J., & Schäper, U. (1994). The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models. Communications in Mathematical Physics, 159( 2), 319-328. doi:10.1007/bf02102641
    • NLM

      Forger FM, Laartz J, Schäper U. The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models [Internet]. Communications in Mathematical Physics. 1994 ; 159( 2): 319-328.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/bf02102641
    • Vancouver

      Forger FM, Laartz J, Schäper U. The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models [Internet]. Communications in Mathematical Physics. 1994 ; 159( 2): 319-328.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/bf02102641
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: ANÁLISE GLOBAL, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS HAMILTONIANOS, SISTEMAS LAGRANGIANOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation. Communications in Mathematical Physics, v. 166, n. 2, p. 255-277, 1994Tradução . . Disponível em: https://doi.org/10.1007/bf02112316. Acesso em: 14 nov. 2025.
    • APA

      Ragazzo, C. G. (1994). Nonintegrability of some Hamiltonian systems, scattering and analytic continuation. Communications in Mathematical Physics, 166( 2), 255-277. doi:10.1007/bf02112316
    • NLM

      Ragazzo CG. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation [Internet]. Communications in Mathematical Physics. 1994 ; 166( 2): 255-277.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/bf02112316
    • Vancouver

      Ragazzo CG. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation [Internet]. Communications in Mathematical Physics. 1994 ; 166( 2): 255-277.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/bf02112316
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel. Localization for random Schrödinger operators with correlated potentials. Communications in Mathematical Physics, n. 140, p. 133-147, 1991Tradução . . Disponível em: https://doi.org/10.1007/BF02099294. Acesso em: 14 nov. 2025.
    • APA

      Dreifus, H. von, & Klein, A. (1991). Localization for random Schrödinger operators with correlated potentials. Communications in Mathematical Physics, ( 140), 133-147. doi:10.1007/BF02099294
    • NLM

      Dreifus H von, Klein A. Localization for random Schrödinger operators with correlated potentials [Internet]. Communications in Mathematical Physics. 1991 ;( 140): 133-147.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/BF02099294
    • Vancouver

      Dreifus H von, Klein A. Localization for random Schrödinger operators with correlated potentials [Internet]. Communications in Mathematical Physics. 1991 ;( 140): 133-147.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/BF02099294
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel. A new proof of localization in the Anderson tight binding model. Communications in Mathematical Physics, n. 124, p. 285-299, 1989Tradução . . Disponível em: https://doi.org/10.1007/BF01219198. Acesso em: 14 nov. 2025.
    • APA

      Dreifus, H. von, & Klein, A. (1989). A new proof of localization in the Anderson tight binding model. Communications in Mathematical Physics, ( 124), 285-299. doi:10.1007/BF01219198
    • NLM

      Dreifus H von, Klein A. A new proof of localization in the Anderson tight binding model [Internet]. Communications in Mathematical Physics. 1989 ;( 124): 285-299.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/BF01219198
    • Vancouver

      Dreifus H von, Klein A. A new proof of localization in the Anderson tight binding model [Internet]. Communications in Mathematical Physics. 1989 ;( 124): 285-299.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/BF01219198
  • Source: Communications in Mathematical Physics. Unidades: IME, IF

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, MECÂNICA DOS FLUÍDOS, TEORIA QUÂNTICA DE CAMPO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENRY, Daniel Bauman e PEREZ, Jose Fernando e WRESZINSKI, Walter Felipe. Stability theory for solitary-wave solutions of scalar field equations. Communications in Mathematical Physics, v. 85, p. 351-361, 1982Tradução . . Disponível em: https://doi.org/10.1007/BF01208719. Acesso em: 14 nov. 2025.
    • APA

      Henry, D. B., Perez, J. F., & Wreszinski, W. F. (1982). Stability theory for solitary-wave solutions of scalar field equations. Communications in Mathematical Physics, 85, 351-361. doi:10.1007/BF01208719
    • NLM

      Henry DB, Perez JF, Wreszinski WF. Stability theory for solitary-wave solutions of scalar field equations [Internet]. Communications in Mathematical Physics. 1982 ; 85 351-361.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/BF01208719
    • Vancouver

      Henry DB, Perez JF, Wreszinski WF. Stability theory for solitary-wave solutions of scalar field equations [Internet]. Communications in Mathematical Physics. 1982 ; 85 351-361.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/BF01208719

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025