Filtros : "Chemical Engineering Science" "2019" Limpar

Filtros



Refine with date range


  • Source: Chemical Engineering Science. Unidade: EP

    Subjects: MODELOS MATEMÁTICOS, MONITORAMENTO, CINÉTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TORRAGA, Maria Giuliana Fontanelli e ESPINOLA COLMÁN, María Magdalena e GIUDICI, Reinaldo. Hydrolysis of acetic anhydride: in situ, real-time monitoring using NIR and UV–Vis spectroscopy. Chemical Engineering Science, v. 210, p. 1-9, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2019.115244. Acesso em: 10 nov. 2025.
    • APA

      Torraga, M. G. F., Espinola Colmán, M. M., & Giudici, R. (2019). Hydrolysis of acetic anhydride: in situ, real-time monitoring using NIR and UV–Vis spectroscopy. Chemical Engineering Science, 210, 1-9. doi:10.1016/j.ces.2019.115244
    • NLM

      Torraga MGF, Espinola Colmán MM, Giudici R. Hydrolysis of acetic anhydride: in situ, real-time monitoring using NIR and UV–Vis spectroscopy [Internet]. Chemical Engineering Science. 2019 ; 210 1-9.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.ces.2019.115244
    • Vancouver

      Torraga MGF, Espinola Colmán MM, Giudici R. Hydrolysis of acetic anhydride: in situ, real-time monitoring using NIR and UV–Vis spectroscopy [Internet]. Chemical Engineering Science. 2019 ; 210 1-9.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.ces.2019.115244
  • Source: Chemical Engineering Science. Unidades: EESC, ICMC

    Subjects: DINÂMICA DOS FLUÍDOS COMPUTACIONAL, ENGENHARIA MECÂNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANSONI, Jonas Laerte e SANTIAGO, Patricia A. e SELEGHIM JUNIOR, Paulo. Multiobjective optimization of a flat-panel airlift reactor designed by computational fluid dynamics. Chemical Engineering Science, v. 195, p. 946-957, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2018.10.041. Acesso em: 10 nov. 2025.
    • APA

      Ansoni, J. L., Santiago, P. A., & Seleghim Junior, P. (2019). Multiobjective optimization of a flat-panel airlift reactor designed by computational fluid dynamics. Chemical Engineering Science, 195, 946-957. doi:10.1016/j.ces.2018.10.041
    • NLM

      Ansoni JL, Santiago PA, Seleghim Junior P. Multiobjective optimization of a flat-panel airlift reactor designed by computational fluid dynamics [Internet]. Chemical Engineering Science. 2019 ; 195 946-957.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.ces.2018.10.041
    • Vancouver

      Ansoni JL, Santiago PA, Seleghim Junior P. Multiobjective optimization of a flat-panel airlift reactor designed by computational fluid dynamics [Internet]. Chemical Engineering Science. 2019 ; 195 946-957.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.ces.2018.10.041
  • Source: Chemical Engineering Science. Unidade: EP

    Subjects: EQUILÍBRIO QUÍMICO, METANO, CALORÍMETROS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEZES, Davi Eber Sanchez de et al. Coexistence of sI and sII in methane-propane hydrate former systems at high pressures. Chemical Engineering Science, v. No 2019, p. 1-11, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2019.08.007. Acesso em: 10 nov. 2025.
    • APA

      Menezes, D. E. S. de, Sum, A. K., Desmedt, A., Pessôa Filho, P. de A., & Robustillo Fuentes, M. D. (2019). Coexistence of sI and sII in methane-propane hydrate former systems at high pressures. Chemical Engineering Science, No 2019, 1-11. doi:10.1016/j.ces.2019.08.007
    • NLM

      Menezes DES de, Sum AK, Desmedt A, Pessôa Filho P de A, Robustillo Fuentes MD. Coexistence of sI and sII in methane-propane hydrate former systems at high pressures [Internet]. Chemical Engineering Science. 2019 ; No 2019 1-11.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.ces.2019.08.007
    • Vancouver

      Menezes DES de, Sum AK, Desmedt A, Pessôa Filho P de A, Robustillo Fuentes MD. Coexistence of sI and sII in methane-propane hydrate former systems at high pressures [Internet]. Chemical Engineering Science. 2019 ; No 2019 1-11.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.ces.2019.08.007
  • Source: Chemical Engineering Science. Unidades: EESC, ICMC

    Subjects: FLUIDIZAÇÃO, TENSÃO RESIDUAL, ENGENHARIA MECÂNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOUALLEM, Joseph et al. Macro-scale effects over filtered and residual stresses in gas-solid riser flows. Chemical Engineering Science, v. 195, p. 553-564, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ces.2018.09.054. Acesso em: 10 nov. 2025.
    • APA

      Mouallem, J., Chavez Cussy, N., Niaki, S. R. A., Milioli, C. L. C. da C., & Milioli, F. E. (2019). Macro-scale effects over filtered and residual stresses in gas-solid riser flows. Chemical Engineering Science, 195, 553-564. doi:10.1016/j.ces.2018.09.054
    • NLM

      Mouallem J, Chavez Cussy N, Niaki SRA, Milioli CLC da C, Milioli FE. Macro-scale effects over filtered and residual stresses in gas-solid riser flows [Internet]. Chemical Engineering Science. 2019 ; 195 553-564.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.ces.2018.09.054
    • Vancouver

      Mouallem J, Chavez Cussy N, Niaki SRA, Milioli CLC da C, Milioli FE. Macro-scale effects over filtered and residual stresses in gas-solid riser flows [Internet]. Chemical Engineering Science. 2019 ; 195 553-564.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.ces.2018.09.054

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025