Filtros : "Applied Mathematics and Optimization" "2025" Limpar

Filtros



Refine with date range


  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel e BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias. Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation. Applied Mathematics and Optimization, v. 92, p. 1-29, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00245-025-10331-w. Acesso em: 09 nov. 2025.
    • APA

      Belluzi, M., Bonotto, E. de M., & Nascimento, M. J. D. (2025). Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation. Applied Mathematics and Optimization, 92, 1-29. doi:10.1007/s00245-025-10331-w
    • NLM

      Belluzi M, Bonotto E de M, Nascimento MJD. Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation [Internet]. Applied Mathematics and Optimization. 2025 ; 92 1-29.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00245-025-10331-w
    • Vancouver

      Belluzi M, Bonotto E de M, Nascimento MJD. Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation [Internet]. Applied Mathematics and Optimization. 2025 ; 92 1-29.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00245-025-10331-w
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory. Applied Mathematics and Optimization, v. 91, n. 2, p. 1-18, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00245-025-10241-x. Acesso em: 09 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory. Applied Mathematics and Optimization, 91( 2), 1-18. doi:10.1007/s00245-025-10241-x
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory [Internet]. Applied Mathematics and Optimization. 2025 ; 91( 2): 1-18.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00245-025-10241-x
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory [Internet]. Applied Mathematics and Optimization. 2025 ; 91( 2): 1-18.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00245-025-10241-x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025