Filtros : "Applied Mathematics and Optimization" "EQUAÇÕES DE NAVIER-STOKES" Removido: "Indexado no Compendex" Limpar

Filtros



Refine with date range


  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory. Applied Mathematics and Optimization, v. 91, n. 2, p. 1-18, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00245-025-10241-x. Acesso em: 07 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory. Applied Mathematics and Optimization, 91( 2), 1-18. doi:10.1007/s00245-025-10241-x
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory [Internet]. Applied Mathematics and Optimization. 2025 ; 91( 2): 1-18.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s00245-025-10241-x
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory [Internet]. Applied Mathematics and Optimization. 2025 ; 91( 2): 1-18.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s00245-025-10241-x
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANG, Xin-Guang et al. Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains. Applied Mathematics and Optimization, v. 83, n. 3, p. 2129-2183, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00245-019-09622-w. Acesso em: 07 nov. 2025.
    • APA

      Yang, X. -G., Qin, Y., Lu, Y., & Ma, T. F. (2021). Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains. Applied Mathematics and Optimization, 83( 3), 2129-2183. doi:10.1007/s00245-019-09622-w
    • NLM

      Yang X-G, Qin Y, Lu Y, Ma TF. Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains [Internet]. Applied Mathematics and Optimization. 2021 ; 83( 3): 2129-2183.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s00245-019-09622-w
    • Vancouver

      Yang X-G, Qin Y, Lu Y, Ma TF. Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains [Internet]. Applied Mathematics and Optimization. 2021 ; 83( 3): 2129-2183.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s00245-019-09622-w

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025