Filtros : "ACS Applied Nano Materials" "IFSC" Limpar

Filtros



Refine with date range


  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: MATERIAIS NANOESTRUTURADOS, NANOPARTÍCULAS, PROPRIEDADES DOS MATERIAIS, LASER

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Richard Silveira et al. Laser-controlled growth of plasmonic gold nanoparticles in PMMA films for high-resolution optical applications. ACS Applied Nano Materials, v. 8, n. 16, p. 8294-8306 + supporting information, 2025Tradução . . Disponível em: https://doi.org/10.1021/acsanm.5c00832. Acesso em: 17 nov. 2025.
    • APA

      Pereira, R. S., Ferreira, D. L., Oliveira, G. F. de, Paula, G. C. F. de, Romero, A. L. dos S., Mendonça, C. R., & Vivas, M. G. (2025). Laser-controlled growth of plasmonic gold nanoparticles in PMMA films for high-resolution optical applications. ACS Applied Nano Materials, 8( 16), 8294-8306 + supporting information. doi:10.1021/acsanm.5c00832
    • NLM

      Pereira RS, Ferreira DL, Oliveira GF de, Paula GCF de, Romero AL dos S, Mendonça CR, Vivas MG. Laser-controlled growth of plasmonic gold nanoparticles in PMMA films for high-resolution optical applications [Internet]. ACS Applied Nano Materials. 2025 ; 8( 16): 8294-8306 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.5c00832
    • Vancouver

      Pereira RS, Ferreira DL, Oliveira GF de, Paula GCF de, Romero AL dos S, Mendonça CR, Vivas MG. Laser-controlled growth of plasmonic gold nanoparticles in PMMA films for high-resolution optical applications [Internet]. ACS Applied Nano Materials. 2025 ; 8( 16): 8294-8306 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.5c00832
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: SEMICONDUTORES, POLÍMEROS (MATERIAIS), NANOELETRÔNICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      UNIGARRO, Andres David Peña e GÜNTHER, Florian Steffen. A comprehensive comparison among capacitive, thermodynamic, and drift-diffusion models for steady-state responses of nanostructured organic electrochemical transistors. ACS Applied Nano Materials, v. 8, n. 23, p. 12329-12341 + supporting information, 2025Tradução . . Disponível em: https://doi.org/10.1021/acsanm.5c02101. Acesso em: 17 nov. 2025.
    • APA

      Unigarro, A. D. P., & Günther, F. S. (2025). A comprehensive comparison among capacitive, thermodynamic, and drift-diffusion models for steady-state responses of nanostructured organic electrochemical transistors. ACS Applied Nano Materials, 8( 23), 12329-12341 + supporting information. doi:10.1021/acsanm.5c02101
    • NLM

      Unigarro ADP, Günther FS. A comprehensive comparison among capacitive, thermodynamic, and drift-diffusion models for steady-state responses of nanostructured organic electrochemical transistors [Internet]. ACS Applied Nano Materials. 2025 ; 8( 23): 12329-12341 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.5c02101
    • Vancouver

      Unigarro ADP, Günther FS. A comprehensive comparison among capacitive, thermodynamic, and drift-diffusion models for steady-state responses of nanostructured organic electrochemical transistors [Internet]. ACS Applied Nano Materials. 2025 ; 8( 23): 12329-12341 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.5c02101
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: FILMES FINOS, ÓPTICA NÃO LINEAR, MATERIAIS NANOESTRUTURADOS, PROPRIEDADES DOS MATERIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDINA, Javier Alonso Lopez et al. Lithography-free ultrathin lossless all-dielectric material with magnetic activity. ACS Applied Nano Materials, v. 8, n. 9, p. 4441-4452 + supporting information, 2025Tradução . . Disponível em: https://doi.org/10.1021/acsanm.4c06418. Acesso em: 17 nov. 2025.
    • APA

      Medina, J. A. L., Villa, E. M., Pizá, P., Domínguez, D., Arce, J. L. V., Vargas, C. A. P., et al. (2025). Lithography-free ultrathin lossless all-dielectric material with magnetic activity. ACS Applied Nano Materials, 8( 9), 4441-4452 + supporting information. doi:10.1021/acsanm.4c06418
    • NLM

      Medina JAL, Villa EM, Pizá P, Domínguez D, Arce JLV, Vargas CAP, Gaona IMS, Miranda EB, Oliveira Junior ON de, Sanchez MHF, Vazquez HT, Mejía-Salazar JR. Lithography-free ultrathin lossless all-dielectric material with magnetic activity [Internet]. ACS Applied Nano Materials. 2025 ; 8( 9): 4441-4452 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c06418
    • Vancouver

      Medina JAL, Villa EM, Pizá P, Domínguez D, Arce JLV, Vargas CAP, Gaona IMS, Miranda EB, Oliveira Junior ON de, Sanchez MHF, Vazquez HT, Mejía-Salazar JR. Lithography-free ultrathin lossless all-dielectric material with magnetic activity [Internet]. ACS Applied Nano Materials. 2025 ; 8( 9): 4441-4452 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c06418
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: SEMICONDUTORES, FOTOLUMINESCÊNCIA, FILMES FINOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELLO, Saron Rosy Sales de et al. Nanocrystalline hexagonal boron nitride thin films deposited by dynamic glancing angle deposition for UV-emitting devices and detectors. ACS Applied Nano Materials, v. 8, n. 23, p. 12380-12392 + supporting information, 2025Tradução . . Disponível em: https://doi.org/10.1021/acsanm.5c02214. Acesso em: 17 nov. 2025.
    • APA

      Mello, S. R. S. de, Cemin, F., Echeverrigaray, F. G., Jimenez, M. J. M., Piroli, V., Costa, F. J. R., et al. (2025). Nanocrystalline hexagonal boron nitride thin films deposited by dynamic glancing angle deposition for UV-emitting devices and detectors. ACS Applied Nano Materials, 8( 23), 12380-12392 + supporting information. doi:10.1021/acsanm.5c02214
    • NLM

      Mello SRS de, Cemin F, Echeverrigaray FG, Jimenez MJM, Piroli V, Costa FJR, Boeira CD, Leidens LM, Riul Junior A, Figueroa CA, Zagonel LF, Zanatta AR, Alvarez F. Nanocrystalline hexagonal boron nitride thin films deposited by dynamic glancing angle deposition for UV-emitting devices and detectors [Internet]. ACS Applied Nano Materials. 2025 ; 8( 23): 12380-12392 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.5c02214
    • Vancouver

      Mello SRS de, Cemin F, Echeverrigaray FG, Jimenez MJM, Piroli V, Costa FJR, Boeira CD, Leidens LM, Riul Junior A, Figueroa CA, Zagonel LF, Zanatta AR, Alvarez F. Nanocrystalline hexagonal boron nitride thin films deposited by dynamic glancing angle deposition for UV-emitting devices and detectors [Internet]. ACS Applied Nano Materials. 2025 ; 8( 23): 12380-12392 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.5c02214
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: OURO, MATERIAIS NANOESTRUTURADOS, NANOPARTÍCULAS, OURO, SENSORES BIOMÉDICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PARK, Jin-hong et al. Mercury(II) ion sensing through in situ synthesis of gold nanoparticles. ACS Applied Nano Materials, v. 8, n. 12, p. 6025-6034 + supporting information, 2025Tradução . . Disponível em: https://doi.org/10.1021/acsanm.5c00176. Acesso em: 17 nov. 2025.
    • APA

      Park, J. -hong, Nam, K., Cho, Y. K., Arai, M. S., Kim, D. -H., & Lee, H. (2025). Mercury(II) ion sensing through in situ synthesis of gold nanoparticles. ACS Applied Nano Materials, 8( 12), 6025-6034 + supporting information. doi:10.1021/acsanm.5c00176
    • NLM

      Park J-hong, Nam K, Cho YK, Arai MS, Kim D-H, Lee H. Mercury(II) ion sensing through in situ synthesis of gold nanoparticles [Internet]. ACS Applied Nano Materials. 2025 ; 8( 12): 6025-6034 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.5c00176
    • Vancouver

      Park J-hong, Nam K, Cho YK, Arai MS, Kim D-H, Lee H. Mercury(II) ion sensing through in situ synthesis of gold nanoparticles [Internet]. ACS Applied Nano Materials. 2025 ; 8( 12): 6025-6034 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.5c00176
  • Source: ACS Applied Nano Materials. Unidades: IFSC, EESC

    Subjects: MATERIAIS NANOESTRUTURADOS, NANOPARTÍCULAS, SENSORES BIOMÉDICOS, BIOPOLÍMEROS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAI, Marylyn Setsuko et al. Upconverting nanoparticles and Cu(I) complex-based platform for oxygen sensing, thermometry, and emission color tuning. ACS Applied Nano Materials, v. 8, n. Ja 2025, p. 854-862 + supporting information: s1-s8, 2025Tradução . . Disponível em: https://doi.org/10.1021/acsanm.4c06351. Acesso em: 17 nov. 2025.
    • APA

      Arai, M. S., Ravaro, L. P., Brambilla, G., Maia, L. J. Q., Dousti, M. R., & de Camargo, A. S. S. (2025). Upconverting nanoparticles and Cu(I) complex-based platform for oxygen sensing, thermometry, and emission color tuning. ACS Applied Nano Materials, 8( Ja 2025), 854-862 + supporting information: s1-s8. doi:10.1021/acsanm.4c06351
    • NLM

      Arai MS, Ravaro LP, Brambilla G, Maia LJQ, Dousti MR, de Camargo ASS. Upconverting nanoparticles and Cu(I) complex-based platform for oxygen sensing, thermometry, and emission color tuning [Internet]. ACS Applied Nano Materials. 2025 ; 8( Ja 2025): 854-862 + supporting information: s1-s8.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c06351
    • Vancouver

      Arai MS, Ravaro LP, Brambilla G, Maia LJQ, Dousti MR, de Camargo ASS. Upconverting nanoparticles and Cu(I) complex-based platform for oxygen sensing, thermometry, and emission color tuning [Internet]. ACS Applied Nano Materials. 2025 ; 8( Ja 2025): 854-862 + supporting information: s1-s8.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c06351
  • Source: ACS Applied Nano Materials. Unidades: IFSC, EP

    Subjects: LIXIVIAÇÃO, NANOPARTÍCULAS, PROPRIEDADES DOS MATERIAIS, FOTOCATÁLISE, GRÃOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORTES, Gustavo Mattos et al. Cl-Doped ZnO nanoparticles with enhanced photocatalytic activity via selective surface lixiviation: implications for acetaminophen degradation. ACS Applied Nano Materials, v. 8, n. 5, p. 2481-2492, 2025Tradução . . Disponível em: https://doi.org/10.1021/acsanm.4c06747c. Acesso em: 17 nov. 2025.
    • APA

      Fortes, G. M., Silva, A. L. da, Ramos, B., Bettini, J., Fonseca, F. C., Gonçalves, R. V., et al. (2025). Cl-Doped ZnO nanoparticles with enhanced photocatalytic activity via selective surface lixiviation: implications for acetaminophen degradation. ACS Applied Nano Materials, 8( 5), 2481-2492. doi:10.1021/acsanm.4c06747
    • NLM

      Fortes GM, Silva AL da, Ramos B, Bettini J, Fonseca FC, Gonçalves RV, Rodrigues Junior O, Gouvêa D. Cl-Doped ZnO nanoparticles with enhanced photocatalytic activity via selective surface lixiviation: implications for acetaminophen degradation [Internet]. ACS Applied Nano Materials. 2025 ; 8( 5): 2481-2492.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c06747c
    • Vancouver

      Fortes GM, Silva AL da, Ramos B, Bettini J, Fonseca FC, Gonçalves RV, Rodrigues Junior O, Gouvêa D. Cl-Doped ZnO nanoparticles with enhanced photocatalytic activity via selective surface lixiviation: implications for acetaminophen degradation [Internet]. ACS Applied Nano Materials. 2025 ; 8( 5): 2481-2492.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c06747c
  • Source: ACS Applied Nano Materials. Unidades: IFSC, ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, COVID-19, EFEITO RAMAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAZIN, Wallance Moreira et al. Explainable machine learning to unveil detection mechanisms with au nanoisland-based surface-enhanced raman scattering for SARS-CoV-2 antigen detection. ACS Applied Nano Materials, v. 7, n. Ja 2024, p. 2335-2342, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsanm.3c05848. Acesso em: 17 nov. 2025.
    • APA

      Pazin, W. M., Furini, L. N., Braz, D. C., Popolin Neto, M., Fernandes, J. D., Constantino, C. J. L., & Oliveira Junior, O. N. de. (2024). Explainable machine learning to unveil detection mechanisms with au nanoisland-based surface-enhanced raman scattering for SARS-CoV-2 antigen detection. ACS Applied Nano Materials, 7( Ja 2024), 2335-2342. doi:10.1021/acsanm.3c05848
    • NLM

      Pazin WM, Furini LN, Braz DC, Popolin Neto M, Fernandes JD, Constantino CJL, Oliveira Junior ON de. Explainable machine learning to unveil detection mechanisms with au nanoisland-based surface-enhanced raman scattering for SARS-CoV-2 antigen detection [Internet]. ACS Applied Nano Materials. 2024 ; 7( Ja 2024): 2335-2342.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.3c05848
    • Vancouver

      Pazin WM, Furini LN, Braz DC, Popolin Neto M, Fernandes JD, Constantino CJL, Oliveira Junior ON de. Explainable machine learning to unveil detection mechanisms with au nanoisland-based surface-enhanced raman scattering for SARS-CoV-2 antigen detection [Internet]. ACS Applied Nano Materials. 2024 ; 7( Ja 2024): 2335-2342.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.3c05848
  • Source: ACS Applied Nano Materials. Unidades: IFSC, IQSC, EESC, FMRP

    Subjects: POLÍMEROS (MATERIAIS), IMPRESSÃO 3-D, BIOPOLÍMEROS, MATERIAIS NANOESTRUTURADOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSSI, Patrícia Fernanda et al. 3D-printed methacrylated gelatin-lignin carbon dot hydrogel combined with PLA nanofibers for wound dressings. ACS Applied Nano Materials, v. 7, n. 20, p. 23519-23531, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsanm.4c03615. Acesso em: 17 nov. 2025.
    • APA

      Rossi, P. F., Santos, F. V. dos, Alves, A. L. M. M., Semensato, L. H., Oliveira, L. F. R., Santos, D. M. dos, et al. (2024). 3D-printed methacrylated gelatin-lignin carbon dot hydrogel combined with PLA nanofibers for wound dressings. ACS Applied Nano Materials, 7( 20), 23519-23531. doi:10.1021/acsanm.4c03615
    • NLM

      Rossi PF, Santos FV dos, Alves ALMM, Semensato LH, Oliveira LFR, Santos DM dos, Bianchi T de P, Inada NM, Campana Filho SP, Oréfice RL, Corrêa DS. 3D-printed methacrylated gelatin-lignin carbon dot hydrogel combined with PLA nanofibers for wound dressings [Internet]. ACS Applied Nano Materials. 2024 ; 7( 20): 23519-23531.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c03615
    • Vancouver

      Rossi PF, Santos FV dos, Alves ALMM, Semensato LH, Oliveira LFR, Santos DM dos, Bianchi T de P, Inada NM, Campana Filho SP, Oréfice RL, Corrêa DS. 3D-printed methacrylated gelatin-lignin carbon dot hydrogel combined with PLA nanofibers for wound dressings [Internet]. ACS Applied Nano Materials. 2024 ; 7( 20): 23519-23531.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c03615
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: ELETROQUÍMICA, VITAMINA C, ELETROQUÍMICA, NANOPARTÍCULAS, NANOTECNOLOGIA, SENSOR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINS, Thiago Serafim e BOTT NETO, José Luiz e OLIVEIRA JUNIOR, Osvaldo Novais de. Label- and redox probe-free bioelectronic chip for monitoring vitamins C and the 25-hydroxyvitamin D3 metabolite. ACS Applied Nano Materials, v. 7, n. Ja 2024, p. 4938-4945 + Supporting Information: S1-S3, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsanm.3c05701. Acesso em: 17 nov. 2025.
    • APA

      Martins, T. S., Bott Neto, J. L., & Oliveira Junior, O. N. de. (2024). Label- and redox probe-free bioelectronic chip for monitoring vitamins C and the 25-hydroxyvitamin D3 metabolite. ACS Applied Nano Materials, 7( Ja 2024), 4938-4945 + Supporting Information: S1-S3. doi:10.1021/acsanm.3c05701
    • NLM

      Martins TS, Bott Neto JL, Oliveira Junior ON de. Label- and redox probe-free bioelectronic chip for monitoring vitamins C and the 25-hydroxyvitamin D3 metabolite [Internet]. ACS Applied Nano Materials. 2024 ; 7( Ja 2024): 4938-4945 + Supporting Information: S1-S3.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.3c05701
    • Vancouver

      Martins TS, Bott Neto JL, Oliveira Junior ON de. Label- and redox probe-free bioelectronic chip for monitoring vitamins C and the 25-hydroxyvitamin D3 metabolite [Internet]. ACS Applied Nano Materials. 2024 ; 7( Ja 2024): 4938-4945 + Supporting Information: S1-S3.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.3c05701
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: NANOCIÊNCIA, MATERIAIS NANOESTRUTURADOS, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTEGA, Pedro Paulo da Silva et al. Insights into the morphology and structural defects of Eu-doped ceria nanostructures for optoelectronic applications in red-emitting devices. ACS Applied Nano Materials, v. 7, n. 11, p. 12466-12479 + supporting information, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsanm.4c00875. Acesso em: 17 nov. 2025.
    • APA

      Ortega, P. P. da S., Amoresi, R. A. C., Teodoro, M. D., Merízio, L. G., Ramirez, M. A., Aldao, C. M., et al. (2024). Insights into the morphology and structural defects of Eu-doped ceria nanostructures for optoelectronic applications in red-emitting devices. ACS Applied Nano Materials, 7( 11), 12466-12479 + supporting information. doi:10.1021/acsanm.4c00875
    • NLM

      Ortega PP da S, Amoresi RAC, Teodoro MD, Merízio LG, Ramirez MA, Aldao CM, Malagù C, Ponce MA, Longo E, Simões AZ. Insights into the morphology and structural defects of Eu-doped ceria nanostructures for optoelectronic applications in red-emitting devices [Internet]. ACS Applied Nano Materials. 2024 ; 7( 11): 12466-12479 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c00875
    • Vancouver

      Ortega PP da S, Amoresi RAC, Teodoro MD, Merízio LG, Ramirez MA, Aldao CM, Malagù C, Ponce MA, Longo E, Simões AZ. Insights into the morphology and structural defects of Eu-doped ceria nanostructures for optoelectronic applications in red-emitting devices [Internet]. ACS Applied Nano Materials. 2024 ; 7( 11): 12466-12479 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c00875
  • Source: ACS Applied Nano Materials. Unidades: IQSC, IFSC

    Subjects: SENSORES QUÍMICOS, CARBONO, NITROGÊNIO, SUSTENTABILIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES, Nathalia Oezau et al. Carbon spherical shells functionalized with nitrogen as sustainable electrochemical materials for rapid detection of diclofenac in saliva, urine, water, and tablets. ACS Applied Nano Materials, v. 7, n. 23, p. 27520-27530, 2024Tradução . . Disponível em: https://doi.org/10.1021/acsanm.4c05526. Acesso em: 17 nov. 2025.
    • APA

      Gomes, N. O., Calegaro, M. L., Mattoso, L. H. C., Oliveira Junior, O. N. de, Machado, S. A. S., & Raymundo-Pereira, P. A. (2024). Carbon spherical shells functionalized with nitrogen as sustainable electrochemical materials for rapid detection of diclofenac in saliva, urine, water, and tablets. ACS Applied Nano Materials, 7( 23), 27520-27530. doi:10.1021/acsanm.4c05526
    • NLM

      Gomes NO, Calegaro ML, Mattoso LHC, Oliveira Junior ON de, Machado SAS, Raymundo-Pereira PA. Carbon spherical shells functionalized with nitrogen as sustainable electrochemical materials for rapid detection of diclofenac in saliva, urine, water, and tablets [Internet]. ACS Applied Nano Materials. 2024 ; 7( 23): 27520-27530.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c05526
    • Vancouver

      Gomes NO, Calegaro ML, Mattoso LHC, Oliveira Junior ON de, Machado SAS, Raymundo-Pereira PA. Carbon spherical shells functionalized with nitrogen as sustainable electrochemical materials for rapid detection of diclofenac in saliva, urine, water, and tablets [Internet]. ACS Applied Nano Materials. 2024 ; 7( 23): 27520-27530.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.4c05526
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: ÓPTICA, NANOTECNOLOGIA, NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SARRIA, Jhon James Hernández e OLIVEIRA JUNIOR, Osvaldo Novais de e MEJÍA-SALAZAR, Jorge Ricardo. Numerical simulations of double-well optical potentials in all-dielectric nanostructures for manipulation of small nanoparticles in aqueous media. ACS Applied Nano Materials, v. 6, n. Ja 2023, p. 1405-1412, 2023Tradução . . Disponível em: https://doi.org/10.1021/acsanm.2c05047. Acesso em: 17 nov. 2025.
    • APA

      Sarria, J. J. H., Oliveira Junior, O. N. de, & Mejía-Salazar, J. R. (2023). Numerical simulations of double-well optical potentials in all-dielectric nanostructures for manipulation of small nanoparticles in aqueous media. ACS Applied Nano Materials, 6( Ja 2023), 1405-1412. doi:10.1021/acsanm.2c05047
    • NLM

      Sarria JJH, Oliveira Junior ON de, Mejía-Salazar JR. Numerical simulations of double-well optical potentials in all-dielectric nanostructures for manipulation of small nanoparticles in aqueous media [Internet]. ACS Applied Nano Materials. 2023 ; 6( Ja 2023): 1405-1412.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.2c05047
    • Vancouver

      Sarria JJH, Oliveira Junior ON de, Mejía-Salazar JR. Numerical simulations of double-well optical potentials in all-dielectric nanostructures for manipulation of small nanoparticles in aqueous media [Internet]. ACS Applied Nano Materials. 2023 ; 6( Ja 2023): 1405-1412.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.2c05047
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: SILICONE, FILMES FINOS, NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEIDENS, Leonardo Mathias et al. Nanotribology of hydrogenated amorphous silicon: sliding- dependent friction and implications for nanoelectromechanical systems. ACS Applied Nano Materials, v. 5, n. 10, p. 15546-15556 + supporting information: S1-S7, 2022Tradução . . Disponível em: https://doi.org/10.1021/acsanm.2c03603. Acesso em: 17 nov. 2025.
    • APA

      Leidens, L. M., Michels, A. F., Perotti, B. L., Alvarez, F., Zanatta, A. R., & Figueroa, C. A. (2022). Nanotribology of hydrogenated amorphous silicon: sliding- dependent friction and implications for nanoelectromechanical systems. ACS Applied Nano Materials, 5( 10), 15546-15556 + supporting information: S1-S7. doi:10.1021/acsanm.2c03603
    • NLM

      Leidens LM, Michels AF, Perotti BL, Alvarez F, Zanatta AR, Figueroa CA. Nanotribology of hydrogenated amorphous silicon: sliding- dependent friction and implications for nanoelectromechanical systems [Internet]. ACS Applied Nano Materials. 2022 ; 5( 10): 15546-15556 + supporting information: S1-S7.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.2c03603
    • Vancouver

      Leidens LM, Michels AF, Perotti BL, Alvarez F, Zanatta AR, Figueroa CA. Nanotribology of hydrogenated amorphous silicon: sliding- dependent friction and implications for nanoelectromechanical systems [Internet]. ACS Applied Nano Materials. 2022 ; 5( 10): 15546-15556 + supporting information: S1-S7.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.2c03603
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: SENSOR, FILMES FINOS, NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DÍAZ-VALENCIA, Brayan F. et al. Nanostructured hyperbolic metamaterials for magnetoplasmonic sensors. ACS Applied Nano Materials, v. 5, n. 2, p. 1740-1744, 2022Tradução . . Disponível em: https://doi.org/10.1021/acsanm.1c04310. Acesso em: 17 nov. 2025.
    • APA

      Díaz-Valencia, B. F., Porras-Montenegro, N., Oliveira Junior, O. N. de, & Mejía-Salazar, J. R. (2022). Nanostructured hyperbolic metamaterials for magnetoplasmonic sensors. ACS Applied Nano Materials, 5( 2), 1740-1744. doi:10.1021/acsanm.1c04310
    • NLM

      Díaz-Valencia BF, Porras-Montenegro N, Oliveira Junior ON de, Mejía-Salazar JR. Nanostructured hyperbolic metamaterials for magnetoplasmonic sensors [Internet]. ACS Applied Nano Materials. 2022 ; 5( 2): 1740-1744.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.1c04310
    • Vancouver

      Díaz-Valencia BF, Porras-Montenegro N, Oliveira Junior ON de, Mejía-Salazar JR. Nanostructured hyperbolic metamaterials for magnetoplasmonic sensors [Internet]. ACS Applied Nano Materials. 2022 ; 5( 2): 1740-1744.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.1c04310
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: POLÍMEROS (MATERIAIS), FILMES FINOS, NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Lucas Daniel Chiba de e OLIVEIRA JUNIOR, Osvaldo Novais de. Silica nanoparticle/polymer film-based soft mechanochromic devices for detecting mechanical deformation and stress cycles in varied environments. ACS Applied Nano Materials, v. 5, n. 2, p. 2906-2911, 2022Tradução . . Disponível em: https://doi.org/10.1021/acsanm.2c00102. Acesso em: 17 nov. 2025.
    • APA

      Castro, L. D. C. de, & Oliveira Junior, O. N. de. (2022). Silica nanoparticle/polymer film-based soft mechanochromic devices for detecting mechanical deformation and stress cycles in varied environments. ACS Applied Nano Materials, 5( 2), 2906-2911. doi:10.1021/acsanm.2c00102
    • NLM

      Castro LDC de, Oliveira Junior ON de. Silica nanoparticle/polymer film-based soft mechanochromic devices for detecting mechanical deformation and stress cycles in varied environments [Internet]. ACS Applied Nano Materials. 2022 ; 5( 2): 2906-2911.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.2c00102
    • Vancouver

      Castro LDC de, Oliveira Junior ON de. Silica nanoparticle/polymer film-based soft mechanochromic devices for detecting mechanical deformation and stress cycles in varied environments [Internet]. ACS Applied Nano Materials. 2022 ; 5( 2): 2906-2911.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.2c00102
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: NANOPARTÍCULAS, PROCESSO SOL-GEL, ANTINEOPLÁSICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RISSI, Nathália Cristina et al. Doped plasmonic zinc oxide nanoparticles with near-infrared absorption for antitumor activity. ACS Applied Nano Materials, v. 4, n. 9, p. 9779-9789 + supporting information, 2021Tradução . . Disponível em: https://doi.org/10.1021/acsanm.1c02197. Acesso em: 17 nov. 2025.
    • APA

      Rissi, N. C., Comparetti, E. J., Estevão, B. M., Mastelaro, V. R., & Zucolotto, V. (2021). Doped plasmonic zinc oxide nanoparticles with near-infrared absorption for antitumor activity. ACS Applied Nano Materials, 4( 9), 9779-9789 + supporting information. doi:10.1021/acsanm.1c02197
    • NLM

      Rissi NC, Comparetti EJ, Estevão BM, Mastelaro VR, Zucolotto V. Doped plasmonic zinc oxide nanoparticles with near-infrared absorption for antitumor activity [Internet]. ACS Applied Nano Materials. 2021 ; 4( 9): 9779-9789 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.1c02197
    • Vancouver

      Rissi NC, Comparetti EJ, Estevão BM, Mastelaro VR, Zucolotto V. Doped plasmonic zinc oxide nanoparticles with near-infrared absorption for antitumor activity [Internet]. ACS Applied Nano Materials. 2021 ; 4( 9): 9779-9789 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.1c02197
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: SENSOR, FILMES FINOS, NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENSEL, Rafael C. et al. Controlled incorporation of silver nanoparticles into layer-by-layer polymer films for reusable electronic tongues. ACS Applied Nano Materials, v. 4, n. 12, p. 14231-14240 + supporting information: S1-S10, 2021Tradução . . Disponível em: https://doi.org/10.1021/acsanm.1c03797. Acesso em: 17 nov. 2025.
    • APA

      Hensel, R. C., Braunger, M. L., Oliveira, B., Shimizu, F. M., Oliveira Junior, O. N. de, Hillenkamp, M., et al. (2021). Controlled incorporation of silver nanoparticles into layer-by-layer polymer films for reusable electronic tongues. ACS Applied Nano Materials, 4( 12), 14231-14240 + supporting information: S1-S10. doi:10.1021/acsanm.1c03797
    • NLM

      Hensel RC, Braunger ML, Oliveira B, Shimizu FM, Oliveira Junior ON de, Hillenkamp M, Riul Junior A, Rodrigues V. Controlled incorporation of silver nanoparticles into layer-by-layer polymer films for reusable electronic tongues [Internet]. ACS Applied Nano Materials. 2021 ; 4( 12): 14231-14240 + supporting information: S1-S10.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.1c03797
    • Vancouver

      Hensel RC, Braunger ML, Oliveira B, Shimizu FM, Oliveira Junior ON de, Hillenkamp M, Riul Junior A, Rodrigues V. Controlled incorporation of silver nanoparticles into layer-by-layer polymer films for reusable electronic tongues [Internet]. ACS Applied Nano Materials. 2021 ; 4( 12): 14231-14240 + supporting information: S1-S10.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.1c03797
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: NANOPARTÍCULAS, ESPECTROSCOPIA RAMAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Anerise de et al. Dynamic behavior of surface-enhanced raman spectra for rhodamine 6G interacting with gold nanorods: implication for analyses under wet versus dry conditions. ACS Applied Nano Materials, v. 3, n. 8, p. 8138-8147, 2020Tradução . . Disponível em: https://doi.org/10.1021/acsanm.0c01530. Acesso em: 17 nov. 2025.
    • APA

      Barros, A. de, Shimizu, F. M., Oliveira, C. S. de, Aparecido Sigoli, F., Santos, D. P. dos, & Mazali, I. O. (2020). Dynamic behavior of surface-enhanced raman spectra for rhodamine 6G interacting with gold nanorods: implication for analyses under wet versus dry conditions. ACS Applied Nano Materials, 3( 8), 8138-8147. doi:10.1021/acsanm.0c01530
    • NLM

      Barros A de, Shimizu FM, Oliveira CS de, Aparecido Sigoli F, Santos DP dos, Mazali IO. Dynamic behavior of surface-enhanced raman spectra for rhodamine 6G interacting with gold nanorods: implication for analyses under wet versus dry conditions [Internet]. ACS Applied Nano Materials. 2020 ; 3( 8): 8138-8147.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.0c01530
    • Vancouver

      Barros A de, Shimizu FM, Oliveira CS de, Aparecido Sigoli F, Santos DP dos, Mazali IO. Dynamic behavior of surface-enhanced raman spectra for rhodamine 6G interacting with gold nanorods: implication for analyses under wet versus dry conditions [Internet]. ACS Applied Nano Materials. 2020 ; 3( 8): 8138-8147.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.0c01530
  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: NANOPARTÍCULAS, ESPECTROSCOPIA RAMAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENSEL, Rafael C. et al. Dielectric permittivity and surface charge density in layer-by-layer poly(diallyldimethylammonium chloride)/Poly(styrenesulfonate) nanostructured films: implications for biosensing. ACS Applied Nano Materials, v. 3, n. 2, p. 1749-1754, 2020Tradução . . Disponível em: https://doi.org/10.1021/acsanm.9b02447. Acesso em: 17 nov. 2025.
    • APA

      Hensel, R. C., Silva, M. de A. P. da, Riul Junior, A., & Rodrigues, V. (2020). Dielectric permittivity and surface charge density in layer-by-layer poly(diallyldimethylammonium chloride)/Poly(styrenesulfonate) nanostructured films: implications for biosensing. ACS Applied Nano Materials, 3( 2), 1749-1754. doi:10.1021/acsanm.9b02447
    • NLM

      Hensel RC, Silva M de AP da, Riul Junior A, Rodrigues V. Dielectric permittivity and surface charge density in layer-by-layer poly(diallyldimethylammonium chloride)/Poly(styrenesulfonate) nanostructured films: implications for biosensing [Internet]. ACS Applied Nano Materials. 2020 ; 3( 2): 1749-1754.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.9b02447
    • Vancouver

      Hensel RC, Silva M de AP da, Riul Junior A, Rodrigues V. Dielectric permittivity and surface charge density in layer-by-layer poly(diallyldimethylammonium chloride)/Poly(styrenesulfonate) nanostructured films: implications for biosensing [Internet]. ACS Applied Nano Materials. 2020 ; 3( 2): 1749-1754.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acsanm.9b02447

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025