Filtros : "Financiamento FAPEMIG" "Financiamento FAPEMIG" "IUSENKO, KOSTIANTYN" Limpar

Filtros



Refine with date range


  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: ÁLGEBRA HOMOLÓGICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IUSENKO, Kostiantyn e MACQUARRIE, John William. Homological properties of extensions of algebras. Mathematische Zeitschrift, v. 309, n. artigo 55, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00209-025-03684-z. Acesso em: 08 out. 2025.
    • APA

      Iusenko, K., & MacQuarrie, J. W. (2025). Homological properties of extensions of algebras. Mathematische Zeitschrift, 309( artigo 55), 1-25. doi:10.1007/s00209-025-03684-z
    • NLM

      Iusenko K, MacQuarrie JW. Homological properties of extensions of algebras [Internet]. Mathematische Zeitschrift. 2025 ; 309( artigo 55): 1-25.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00209-025-03684-z
    • Vancouver

      Iusenko K, MacQuarrie JW. Homological properties of extensions of algebras [Internet]. Mathematische Zeitschrift. 2025 ; 309( artigo 55): 1-25.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00209-025-03684-z
  • Source: Journal of Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E MÓDULOS TOPOLÓGICOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DAS CATEGORIAS, ÁLGEBRA HOMOLÓGICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IUSENKO, Kostiantyn e MACQUARRIE, John William. Semisimplicity and separability for pseudocompact algebras. Journal of Algebra and its Applications, v. 24, n. 3, p. art. 2550078 (24 ), 2025Tradução . . Disponível em: https://doi.org/10.1142/S0219498825500781. Acesso em: 08 out. 2025.
    • APA

      Iusenko, K., & MacQuarrie, J. W. (2025). Semisimplicity and separability for pseudocompact algebras. Journal of Algebra and its Applications, 24( 3), art. 2550078 (24 ). doi:10.1142/S0219498825500781
    • NLM

      Iusenko K, MacQuarrie JW. Semisimplicity and separability for pseudocompact algebras [Internet]. Journal of Algebra and its Applications. 2025 ;24( 3): art. 2550078 (24 ).[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0219498825500781
    • Vancouver

      Iusenko K, MacQuarrie JW. Semisimplicity and separability for pseudocompact algebras [Internet]. Journal of Algebra and its Applications. 2025 ;24( 3): art. 2550078 (24 ).[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0219498825500781
  • Source: Bulletin of the Brazilian Mathematical Society, New Series. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IUSENKO, Kostiantyn e MACQUARRIE, John William e QUIRINO, Samuel. A functorial approach to Gabriel k-quiver constructions for coalgebras and pseudocompact algebras. Bulletin of the Brazilian Mathematical Society, New Series, v. 52, p. 697-719, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00574-020-00227-4. Acesso em: 08 out. 2025.
    • APA

      Iusenko, K., MacQuarrie, J. W., & Quirino, S. (2021). A functorial approach to Gabriel k-quiver constructions for coalgebras and pseudocompact algebras. Bulletin of the Brazilian Mathematical Society, New Series, 52, 697-719. doi:10.1007/s00574-020-00227-4
    • NLM

      Iusenko K, MacQuarrie JW, Quirino S. A functorial approach to Gabriel k-quiver constructions for coalgebras and pseudocompact algebras [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2021 ; 52 697-719.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-020-00227-4
    • Vancouver

      Iusenko K, MacQuarrie JW, Quirino S. A functorial approach to Gabriel k-quiver constructions for coalgebras and pseudocompact algebras [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2021 ; 52 697-719.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-020-00227-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025