Filtros : "TERMODINÂMICA" "Suiça" Limpar

Filtros



Limitar por data


  • Fonte: Entropy. Unidade: IFSC

    Assuntos: FÍSICA MODERNA, SISTEMA QUÂNTICO, CONDENSADO DE BOSE-EINSTEIN, GASES, TERMODINÂMICA, ÁTOMOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIOTTI, Marcos Paulo et al. The entropy and energy for non-mechanical work at the bose-einstein transition of a harmonically trapped gas using an empirical global-variable method. Entropy, v. 26, n. 8, p. 658-1-658-11, 2024Tradução . . Disponível em: https://doi.org/10.3390/e26080658. Acesso em: 17 out. 2024.
    • APA

      Miotti, M. P., Martins, E. B., Hemmerling, M., & Bagnato, V. S. (2024). The entropy and energy for non-mechanical work at the bose-einstein transition of a harmonically trapped gas using an empirical global-variable method. Entropy, 26( 8), 658-1-658-11. doi:10.3390/e26080658
    • NLM

      Miotti MP, Martins EB, Hemmerling M, Bagnato VS. The entropy and energy for non-mechanical work at the bose-einstein transition of a harmonically trapped gas using an empirical global-variable method [Internet]. Entropy. 2024 ; 26( 8): 658-1-658-11.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e26080658
    • Vancouver

      Miotti MP, Martins EB, Hemmerling M, Bagnato VS. The entropy and energy for non-mechanical work at the bose-einstein transition of a harmonically trapped gas using an empirical global-variable method [Internet]. Entropy. 2024 ; 26( 8): 658-1-658-11.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e26080658
  • Fonte: Entropy. Unidade: IFSC

    Assuntos: TERMODINÂMICA, SISTEMA QUÂNTICO, CONDENSADO DE BOSE-EINSTEIN

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REYES-AYALA, Ignacio et al. Carnot cycles in a harmonically confined ultracold gas across Bose-Einstein condensation. Entropy, v. 25, n. 2, p. 311-1-311-9, 2023Tradução . . Disponível em: https://doi.org/10.3390/e25020311. Acesso em: 17 out. 2024.
    • APA

      Reyes-Ayala, I., Miotti, M. P., Hemmerling, M., Dubessy, R., Perrin, H., Romero-Rochin, V. M., & Bagnato, V. S. (2023). Carnot cycles in a harmonically confined ultracold gas across Bose-Einstein condensation. Entropy, 25( 2), 311-1-311-9. doi:10.3390/e25020311
    • NLM

      Reyes-Ayala I, Miotti MP, Hemmerling M, Dubessy R, Perrin H, Romero-Rochin VM, Bagnato VS. Carnot cycles in a harmonically confined ultracold gas across Bose-Einstein condensation [Internet]. Entropy. 2023 ; 25( 2): 311-1-311-9.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e25020311
    • Vancouver

      Reyes-Ayala I, Miotti MP, Hemmerling M, Dubessy R, Perrin H, Romero-Rochin VM, Bagnato VS. Carnot cycles in a harmonically confined ultracold gas across Bose-Einstein condensation [Internet]. Entropy. 2023 ; 25( 2): 311-1-311-9.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e25020311
  • Fonte: ENTROPY. Unidade: IF

    Assunto: TERMODINÂMICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAWTHORNE, Felipe et al. Nonequilibrium thermodynamics of the majority vote model. ENTROPY, v. 25, n. 8, p. 1230, 2023Tradução . . Disponível em: https://doi.org/10.3390/e25081230. Acesso em: 17 out. 2024.
    • APA

      Hawthorne, F., Harunari, P. E., Oliveira, M. J. de, & Fiore, C. E. (2023). Nonequilibrium thermodynamics of the majority vote model. ENTROPY, 25( 8), 1230. doi:10.3390/e25081230
    • NLM

      Hawthorne F, Harunari PE, Oliveira MJ de, Fiore CE. Nonequilibrium thermodynamics of the majority vote model [Internet]. ENTROPY. 2023 ; 25( 8): 1230.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e25081230
    • Vancouver

      Hawthorne F, Harunari PE, Oliveira MJ de, Fiore CE. Nonequilibrium thermodynamics of the majority vote model [Internet]. ENTROPY. 2023 ; 25( 8): 1230.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e25081230
  • Fonte: Entropy. Unidade: IFSC

    Assuntos: TERMODINÂMICA, SISTEMA QUÂNTICO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALAVAZI, André Hernandes Alves e BRITO, Frederico Borges de. A Schmidt decomposition approach to quantum thermodynamics. Entropy, v. No 2022, n. 11, p. 1645-1-1645-1-13, 2022Tradução . . Disponível em: https://doi.org/10.3390/e24111645. Acesso em: 17 out. 2024.
    • APA

      Malavazi, A. H. A., & Brito, F. B. de. (2022). A Schmidt decomposition approach to quantum thermodynamics. Entropy, No 2022( 11), 1645-1-1645-1-13. doi:10.3390/e24111645
    • NLM

      Malavazi AHA, Brito FB de. A Schmidt decomposition approach to quantum thermodynamics [Internet]. Entropy. 2022 ; No 2022( 11): 1645-1-1645-1-13.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e24111645
    • Vancouver

      Malavazi AHA, Brito FB de. A Schmidt decomposition approach to quantum thermodynamics [Internet]. Entropy. 2022 ; No 2022( 11): 1645-1-1645-1-13.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e24111645
  • Fonte: Frontiers in Chemistry. Unidade: IFSC

    Assuntos: TERMODINÂMICA, ÓPTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OTANI, Sandro K. et al. Spectroscopic characterization of rare events in colloidal particle stochastic thermodynamics. Frontiers in Chemistry, v. 10, p. 879524-1-879524-9, 2022Tradução . . Disponível em: https://doi.org/10.3389/fchem.2022.879524. Acesso em: 17 out. 2024.
    • APA

      Otani, S. K., Martins, T. T., Muniz, S. R., Sousa Filho, P. C., Sigoli, F. A., & Nome, R. A. (2022). Spectroscopic characterization of rare events in colloidal particle stochastic thermodynamics. Frontiers in Chemistry, 10, 879524-1-879524-9. doi:10.3389/fchem.2022.879524
    • NLM

      Otani SK, Martins TT, Muniz SR, Sousa Filho PC, Sigoli FA, Nome RA. Spectroscopic characterization of rare events in colloidal particle stochastic thermodynamics [Internet]. Frontiers in Chemistry. 2022 ; 10 879524-1-879524-9.[citado 2024 out. 17 ] Available from: https://doi.org/10.3389/fchem.2022.879524
    • Vancouver

      Otani SK, Martins TT, Muniz SR, Sousa Filho PC, Sigoli FA, Nome RA. Spectroscopic characterization of rare events in colloidal particle stochastic thermodynamics [Internet]. Frontiers in Chemistry. 2022 ; 10 879524-1-879524-9.[citado 2024 out. 17 ] Available from: https://doi.org/10.3389/fchem.2022.879524
  • Fonte: Physics. Unidade: IF

    Assuntos: MECÂNICA ESTATÍSTICA, TERMODINÂMICA, ENTROPIA, FRACTAIS, ÁLGEBRA, CÁLCULO DIFERENCIAL E INTEGRAL

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEPPMAN, Airton. Thermofractals, Non-Additive Entropy, and q-Calculus. Physics, v. 3, n. 2, p. 290-301, 2021Tradução . . Disponível em: https://doi.org/10.3390/physics3020021. Acesso em: 17 out. 2024.
    • APA

      Deppman, A. (2021). Thermofractals, Non-Additive Entropy, and q-Calculus. Physics, 3( 2), 290-301. doi:10.3390/physics3020021
    • NLM

      Deppman A. Thermofractals, Non-Additive Entropy, and q-Calculus [Internet]. Physics. 2021 ; 3( 2): 290-301.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/physics3020021
    • Vancouver

      Deppman A. Thermofractals, Non-Additive Entropy, and q-Calculus [Internet]. Physics. 2021 ; 3( 2): 290-301.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/physics3020021
  • Fonte: Entropy. Unidade: EESC

    Assuntos: ENTROPIA, TERMODINÂMICA, ENGENHARIA ELÉTRICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NATAL, Jordão et al. Entropy: from thermodynamics to information processing. Entropy, v. 23, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.3390/e23101340. Acesso em: 17 out. 2024.
    • APA

      Natal, J., Ávila, I., Tsukahara, V. H. B., Pinheiro, M., & Maciel, C. D. (2021). Entropy: from thermodynamics to information processing. Entropy, 23, 1-14. doi:10.3390/e23101340
    • NLM

      Natal J, Ávila I, Tsukahara VHB, Pinheiro M, Maciel CD. Entropy: from thermodynamics to information processing [Internet]. Entropy. 2021 ; 23 1-14.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e23101340
    • Vancouver

      Natal J, Ávila I, Tsukahara VHB, Pinheiro M, Maciel CD. Entropy: from thermodynamics to information processing [Internet]. Entropy. 2021 ; 23 1-14.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e23101340
  • Fonte: Materials Chemistry and Physics. Unidades: EEL, IFSC

    Assuntos: CAMPO MAGNÉTICO, TERMODINÂMICA, FOTOLUMINESCÊNCIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Felipe Souza et al. Electrical and thermodynamic study of SrTiO3 reduction using the van der Pauw method. Materials Chemistry and Physics, v. 263, p. 124428-1-124428-5, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.matchemphys.2021.124428. Acesso em: 17 out. 2024.
    • APA

      Oliveira, F. S., Guimarães, L. G., Santos, C. A. M. dos, Lima, B. S. de, & Luz, M. S. da. (2021). Electrical and thermodynamic study of SrTiO3 reduction using the van der Pauw method. Materials Chemistry and Physics, 263, 124428-1-124428-5. doi:10.1016/j.matchemphys.2021.124428
    • NLM

      Oliveira FS, Guimarães LG, Santos CAM dos, Lima BS de, Luz MS da. Electrical and thermodynamic study of SrTiO3 reduction using the van der Pauw method [Internet]. Materials Chemistry and Physics. 2021 ; 263 124428-1-124428-5.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.matchemphys.2021.124428
    • Vancouver

      Oliveira FS, Guimarães LG, Santos CAM dos, Lima BS de, Luz MS da. Electrical and thermodynamic study of SrTiO3 reduction using the van der Pauw method [Internet]. Materials Chemistry and Physics. 2021 ; 263 124428-1-124428-5.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.matchemphys.2021.124428
  • Fonte: Contributions to Mineralogy and Petrology. Unidade: IGC

    Assuntos: ROCHAS GRANÍTICAS, OLIGOELEMENTOS, TERMODINÂMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Adriana e JANASI, Valdecir de Assis. Tracking the oxygen fugacity of enclave-forming granitic melts through plagioclase trace element signatures. Contributions to Mineralogy and Petrology, v. 175, n. 70, p. -, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00410-020-01702-3. Acesso em: 17 out. 2024.
    • APA

      Alves, A., & Janasi, V. de A. (2020). Tracking the oxygen fugacity of enclave-forming granitic melts through plagioclase trace element signatures. Contributions to Mineralogy and Petrology, 175( 70), -. doi:10.1007/s00410-020-01702-3
    • NLM

      Alves A, Janasi V de A. Tracking the oxygen fugacity of enclave-forming granitic melts through plagioclase trace element signatures [Internet]. Contributions to Mineralogy and Petrology. 2020 ; 175( 70): -.[citado 2024 out. 17 ] Available from: https://doi.org/10.1007/s00410-020-01702-3
    • Vancouver

      Alves A, Janasi V de A. Tracking the oxygen fugacity of enclave-forming granitic melts through plagioclase trace element signatures [Internet]. Contributions to Mineralogy and Petrology. 2020 ; 175( 70): -.[citado 2024 out. 17 ] Available from: https://doi.org/10.1007/s00410-020-01702-3
  • Fonte: Metals. Unidade: EP

    Assuntos: TERMODINÂMICA, SOLDAGEM, INDÚSTRIA AUTOMOBILÍSTICA

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Márcio e FURLANETTO, Valdir e BRANDI, Sérgio Duarte. Development of a Resistance Spot Welding Process Using Additive Manufacturing. Metals, v. 10, n. 5, 2020Tradução . . Disponível em: https://doi.org/10.3390/met10050555. Acesso em: 17 out. 2024.
    • APA

      Batista, M., Furlanetto, V., & Brandi, S. D. (2020). Development of a Resistance Spot Welding Process Using Additive Manufacturing. Metals, 10( 5). doi:10.3390/met10050555
    • NLM

      Batista M, Furlanetto V, Brandi SD. Development of a Resistance Spot Welding Process Using Additive Manufacturing [Internet]. Metals. 2020 ;10( 5):[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/met10050555
    • Vancouver

      Batista M, Furlanetto V, Brandi SD. Development of a Resistance Spot Welding Process Using Additive Manufacturing [Internet]. Metals. 2020 ;10( 5):[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/met10050555
  • Fonte: Entropy. Unidade: IFSC

    Assuntos: TERMODINÂMICA, COMPUTAÇÃO QUÂNTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHERUBIM, Cleverson e BRITO, Frederico Borges de e DEFFNER, Sebastian. Non-thermal quantum engine in transmon qubits. Entropy, v. 21, n. 6, p. 545-1-545-11, 2019Tradução . . Disponível em: https://doi.org/10.3390/e21060545. Acesso em: 17 out. 2024.
    • APA

      Cherubim, C., Brito, F. B. de, & Deffner, S. (2019). Non-thermal quantum engine in transmon qubits. Entropy, 21( 6), 545-1-545-11. doi:10.3390/e21060545
    • NLM

      Cherubim C, Brito FB de, Deffner S. Non-thermal quantum engine in transmon qubits [Internet]. Entropy. 2019 ; 21( 6): 545-1-545-11.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e21060545
    • Vancouver

      Cherubim C, Brito FB de, Deffner S. Non-thermal quantum engine in transmon qubits [Internet]. Entropy. 2019 ; 21( 6): 545-1-545-11.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/e21060545
  • Fonte: Frontiers in Energy Research. Nome do evento: International Conference on Carbon Dioxide Utilization. Unidade: EP

    Assuntos: TERMODINÂMICA, DIÓXIDO DE CARBONO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PACHECO, Kelvin André et al. Assessment of the brazilian market for products by carbon dioxide conversion. Frontiers in Energy Research. Lausanne: Escola Politécnica, Universidade de São Paulo. Disponível em: https://doi.org/10.3389/fenrg.2019.00075. Acesso em: 17 out. 2024. , 2019
    • APA

      Pacheco, K. A., Reis, A. de C., Bresciani, A. E., Nascimento, C. A. O. do, & Alves, R. M. de B. (2019). Assessment of the brazilian market for products by carbon dioxide conversion. Frontiers in Energy Research. Lausanne: Escola Politécnica, Universidade de São Paulo. doi:10.3389/fenrg.2019.00075
    • NLM

      Pacheco KA, Reis A de C, Bresciani AE, Nascimento CAO do, Alves RM de B. Assessment of the brazilian market for products by carbon dioxide conversion [Internet]. Frontiers in Energy Research. 2019 ; 7 1-16.[citado 2024 out. 17 ] Available from: https://doi.org/10.3389/fenrg.2019.00075
    • Vancouver

      Pacheco KA, Reis A de C, Bresciani AE, Nascimento CAO do, Alves RM de B. Assessment of the brazilian market for products by carbon dioxide conversion [Internet]. Frontiers in Energy Research. 2019 ; 7 1-16.[citado 2024 out. 17 ] Available from: https://doi.org/10.3389/fenrg.2019.00075
  • Fonte: Journal of materials engineering and performance. Unidade: EEL

    Assunto: TERMODINÂMICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, A. M. S. et al. Microstructural and Mechanical Characterization of Directionally Solidified Conventional and Nb-Modified Mar-M247 Superalloy. Journal of materials engineering and performance, v. 28, p. 2427–2438, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11665-019-04014-1. Acesso em: 17 out. 2024.
    • APA

      Costa, A. M. S., Lopes, E. S. N., Contieri, R. J., Caram, R., Baldan, R., Fuchs, G. E., & Nunes, C. A. (2019). Microstructural and Mechanical Characterization of Directionally Solidified Conventional and Nb-Modified Mar-M247 Superalloy. Journal of materials engineering and performance, 28, 2427–2438. doi:10.1007/s11665-019-04014-1
    • NLM

      Costa AMS, Lopes ESN, Contieri RJ, Caram R, Baldan R, Fuchs GE, Nunes CA. Microstructural and Mechanical Characterization of Directionally Solidified Conventional and Nb-Modified Mar-M247 Superalloy [Internet]. Journal of materials engineering and performance. 2019 ;28 2427–2438.[citado 2024 out. 17 ] Available from: https://doi.org/10.1007/s11665-019-04014-1
    • Vancouver

      Costa AMS, Lopes ESN, Contieri RJ, Caram R, Baldan R, Fuchs GE, Nunes CA. Microstructural and Mechanical Characterization of Directionally Solidified Conventional and Nb-Modified Mar-M247 Superalloy [Internet]. Journal of materials engineering and performance. 2019 ;28 2427–2438.[citado 2024 out. 17 ] Available from: https://doi.org/10.1007/s11665-019-04014-1
  • Fonte: Journal of Alloys and Compounds. Unidade: EP

    Assuntos: TERMODINÂMICA, ALUMÍNIO

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHÖN, Cláudio Geraldo et al. A proof of concept: Thermodynamics of aluminum – transition metal highly concentrated alloys. Journal of Alloys and Compounds, v. 781, p. 595-605, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jallcom.2018.12.068. Acesso em: 17 out. 2024.
    • APA

      Schön, C. G., Duong, T., Wang, Y., & Arroyave, R. (2019). A proof of concept: Thermodynamics of aluminum – transition metal highly concentrated alloys. Journal of Alloys and Compounds, 781, 595-605. doi:10.1016/j.jallcom.2018.12.068
    • NLM

      Schön CG, Duong T, Wang Y, Arroyave R. A proof of concept: Thermodynamics of aluminum – transition metal highly concentrated alloys [Internet]. Journal of Alloys and Compounds. 2019 ;781 595-605.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.jallcom.2018.12.068
    • Vancouver

      Schön CG, Duong T, Wang Y, Arroyave R. A proof of concept: Thermodynamics of aluminum – transition metal highly concentrated alloys [Internet]. Journal of Alloys and Compounds. 2019 ;781 595-605.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.jallcom.2018.12.068
  • Fonte: Energies. Unidade: EP

    Assuntos: TERMODINÂMICA, HIDROGÊNIO, GASEIFICAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAGDELDIN, Mohamed et al. The bioSCWG project:: understanding the trade-offs in the process and thermal design of hydrogen and synthetic natural gas production. Energies, v. 9, n. 10, p. 1-27, 2016Tradução . . Disponível em: https://doi.org/10.3390/en9100838. Acesso em: 17 out. 2024.
    • APA

      Magdeldin, M., Kohl, T., Blasio, C. D., Järvinen, M., Park, S. W., & Giudici, R. (2016). The bioSCWG project:: understanding the trade-offs in the process and thermal design of hydrogen and synthetic natural gas production. Energies, 9( 10), 1-27. doi:10.3390/en9100838
    • NLM

      Magdeldin M, Kohl T, Blasio CD, Järvinen M, Park SW, Giudici R. The bioSCWG project:: understanding the trade-offs in the process and thermal design of hydrogen and synthetic natural gas production [Internet]. Energies. 2016 ; 9( 10): 1-27.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/en9100838
    • Vancouver

      Magdeldin M, Kohl T, Blasio CD, Järvinen M, Park SW, Giudici R. The bioSCWG project:: understanding the trade-offs in the process and thermal design of hydrogen and synthetic natural gas production [Internet]. Energies. 2016 ; 9( 10): 1-27.[citado 2024 out. 17 ] Available from: https://doi.org/10.3390/en9100838
  • Unidade: EESC

    Assuntos: TRANSFERÊNCIA DE CALOR (MODELOS MATEMÁTICOS), DINÂMICA DOS FLUÍDOS, TERMODINÂMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABEZAS-GÓMEZ, Luben e NAVARRO, Hélio Aparecido e SAIZ JABARDO, José Maria. Thermal performance modeling of cross-flow heat exchangers. . Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-319-09671-1. Acesso em: 17 out. 2024. , 2015
    • APA

      Cabezas-Gómez, L., Navarro, H. A., & Saiz Jabardo, J. M. (2015). Thermal performance modeling of cross-flow heat exchangers. Cham: Springer. doi:10.1007/978-3-319-09671-1
    • NLM

      Cabezas-Gómez L, Navarro HA, Saiz Jabardo JM. Thermal performance modeling of cross-flow heat exchangers [Internet]. 2015 ;[citado 2024 out. 17 ] Available from: https://doi.org/10.1007/978-3-319-09671-1
    • Vancouver

      Cabezas-Gómez L, Navarro HA, Saiz Jabardo JM. Thermal performance modeling of cross-flow heat exchangers [Internet]. 2015 ;[citado 2024 out. 17 ] Available from: https://doi.org/10.1007/978-3-319-09671-1
  • Fonte: Chemical Engineering and Processing: Process Intensification. Unidade: FCF

    Assuntos: TERMODINÂMICA, SOLUÇÕES AQUOSAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIGATTO, Gisele et al. Chitin as biosorbent for phenol removal from aqueous solution: equilibrium, kinetic and thermodynamic studies. Chemical Engineering and Processing: Process Intensification, v. 70, p. 131-139, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.cep.2013.04.009. Acesso em: 17 out. 2024.
    • APA

      Pigatto, G., Lodi, A., Finocchio, E., Palma, M. S. A., & Converti, A. (2013). Chitin as biosorbent for phenol removal from aqueous solution: equilibrium, kinetic and thermodynamic studies. Chemical Engineering and Processing: Process Intensification, 70, 131-139. doi:10.1016/j.cep.2013.04.009
    • NLM

      Pigatto G, Lodi A, Finocchio E, Palma MSA, Converti A. Chitin as biosorbent for phenol removal from aqueous solution: equilibrium, kinetic and thermodynamic studies [Internet]. Chemical Engineering and Processing: Process Intensification. 2013 ; 70 131-139.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.cep.2013.04.009
    • Vancouver

      Pigatto G, Lodi A, Finocchio E, Palma MSA, Converti A. Chitin as biosorbent for phenol removal from aqueous solution: equilibrium, kinetic and thermodynamic studies [Internet]. Chemical Engineering and Processing: Process Intensification. 2013 ; 70 131-139.[citado 2024 out. 17 ] Available from: https://doi.org/10.1016/j.cep.2013.04.009

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024