Source: Sensors. Unidade: ICMC
Subjects: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE, INTERNET DAS COISAS, APRENDIZADO COMPUTACIONAL
ABNT
FURQUIM, Gustavo Antonio et al. How to improve fault tolerance in disaster predictions: a case study about flash floods using IoT, ML and real data. Sensors, v. 18, n. 3, p. 1-20, 2018Tradução . . Disponível em: https://doi.org/10.3390/s18030907. Acesso em: 08 nov. 2025.APA
Furquim, G. A., Rocha Filho, G. P., Jalali, R., Pessin, G., Pazzi, R. W., & Ueyama, J. (2018). How to improve fault tolerance in disaster predictions: a case study about flash floods using IoT, ML and real data. Sensors, 18( 3), 1-20. doi:10.3390/s18030907NLM
Furquim GA, Rocha Filho GP, Jalali R, Pessin G, Pazzi RW, Ueyama J. How to improve fault tolerance in disaster predictions: a case study about flash floods using IoT, ML and real data [Internet]. Sensors. 2018 ;18( 3): 1-20.[citado 2025 nov. 08 ] Available from: https://doi.org/10.3390/s18030907Vancouver
Furquim GA, Rocha Filho GP, Jalali R, Pessin G, Pazzi RW, Ueyama J. How to improve fault tolerance in disaster predictions: a case study about flash floods using IoT, ML and real data [Internet]. Sensors. 2018 ;18( 3): 1-20.[citado 2025 nov. 08 ] Available from: https://doi.org/10.3390/s18030907

