Filtros : "OPERADORES LINEARES" "2020" Removido: "Mathematica Bohemica" Limpar

Filtros



Refine with date range


  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Nonlinear eigenvalue problems in Hilbert spaces. 2020, Anais.. São Carlos: ICMC-USP, 2020. Disponível em: http://summer.icmc.usp.br/summers/summer20/download/Summer20.pdf. Acesso em: 05 dez. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2020). Nonlinear eigenvalue problems in Hilbert spaces. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer20/download/Summer20.pdf
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Nonlinear eigenvalue problems in Hilbert spaces [Internet]. Abstracts. 2020 ;[citado 2025 dez. 05 ] Available from: http://summer.icmc.usp.br/summers/summer20/download/Summer20.pdf
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Nonlinear eigenvalue problems in Hilbert spaces [Internet]. Abstracts. 2020 ;[citado 2025 dez. 05 ] Available from: http://summer.icmc.usp.br/summers/summer20/download/Summer20.pdf
  • Source: Journal of Functional Analysis. Unidade: IME

    Subjects: GEOMETRIA ALGÉBRICA, TOPOLOGIA ALGÉBRICA, SISTEMAS SOBREDETERMINADOS, OPERADORES LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDARO, Paulo Domingos e SALA, Giuseppe Della e LAMEL, Bernhard. The Borel map for compact sets in the plane. Journal of Functional Analysis, v. 278, n. 6, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jfa.2019.108402. Acesso em: 05 dez. 2025.
    • APA

      Cordaro, P. D., Sala, G. D., & Lamel, B. (2020). The Borel map for compact sets in the plane. Journal of Functional Analysis, 278( 6). doi:10.1016/j.jfa.2019.108402
    • NLM

      Cordaro PD, Sala GD, Lamel B. The Borel map for compact sets in the plane [Internet]. Journal of Functional Analysis. 2020 ; 278( 6):[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jfa.2019.108402
    • Vancouver

      Cordaro PD, Sala GD, Lamel B. The Borel map for compact sets in the plane [Internet]. Journal of Functional Analysis. 2020 ; 278( 6):[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jfa.2019.108402
  • Source: Positivity. Unidade: ICMC

    Subjects: APROXIMAÇÃO, PROBLEMAS DE AUTOVALORES, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARRIJO, Angelina O e JORDÃO, Thaís. Approximation tools and decay rates for eigenvalues of integral operators on a general setting. Positivity, v. 24, n. 4, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11117-019-00706-z. Acesso em: 05 dez. 2025.
    • APA

      Carrijo, A. O., & Jordão, T. (2020). Approximation tools and decay rates for eigenvalues of integral operators on a general setting. Positivity, 24( 4), Se 2020. doi:10.1007/s11117-019-00706-z
    • NLM

      Carrijo AO, Jordão T. Approximation tools and decay rates for eigenvalues of integral operators on a general setting [Internet]. Positivity. 2020 ; 24( 4): Se 2020.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11117-019-00706-z
    • Vancouver

      Carrijo AO, Jordão T. Approximation tools and decay rates for eigenvalues of integral operators on a general setting [Internet]. Positivity. 2020 ; 24( 4): Se 2020.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11117-019-00706-z
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces. 2020, Anais.. São Carlos: ICMC-USP, 2020. Disponível em: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php. Acesso em: 05 dez. 2025.
    • APA

      Silva, E. R. da. (2020). Local solvability for a class of linear operators in Triebel-Lizorkin spaces. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Abstracts. 2020 ;[citado 2025 dez. 05 ] Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Abstracts. 2020 ;[citado 2025 dez. 05 ] Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, OPERADORES LINEARES, TEOREMA DO PONTO FIXO

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. Linearization and stability in infinite dimensional dynamical systems. 2020, Anais.. São Carlos: ICMC-USP, 2020. Disponível em: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php. Acesso em: 05 dez. 2025.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2020). Linearization and stability in infinite dimensional dynamical systems. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • NLM

      Rodrigues HM, Sola-Morales J. Linearization and stability in infinite dimensional dynamical systems [Internet]. Abstracts. 2020 ;[citado 2025 dez. 05 ] Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • Vancouver

      Rodrigues HM, Sola-Morales J. Linearization and stability in infinite dimensional dynamical systems [Internet]. Abstracts. 2020 ;[citado 2025 dez. 05 ] Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
  • Source: Advances in Operator Theory. Unidade: IME

    Subjects: OPERADORES LINEARES, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AUGUSTO, André Quintal e PELLEGRINI, Leonardo. On the existence of subspace-hypercyclic operators and a new criteria for subspace-hypercyclicity. Advances in Operator Theory, v. 5, n. 4, p. 1814-1824, 2020Tradução . . Disponível em: https://doi.org/10.1007/s43036-020-00095-1. Acesso em: 05 dez. 2025.
    • APA

      Augusto, A. Q., & Pellegrini, L. (2020). On the existence of subspace-hypercyclic operators and a new criteria for subspace-hypercyclicity. Advances in Operator Theory, 5( 4), 1814-1824. doi:10.1007/s43036-020-00095-1
    • NLM

      Augusto AQ, Pellegrini L. On the existence of subspace-hypercyclic operators and a new criteria for subspace-hypercyclicity [Internet]. Advances in Operator Theory. 2020 ; 5( 4): 1814-1824.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s43036-020-00095-1
    • Vancouver

      Augusto AQ, Pellegrini L. On the existence of subspace-hypercyclic operators and a new criteria for subspace-hypercyclicity [Internet]. Advances in Operator Theory. 2020 ; 5( 4): 1814-1824.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s43036-020-00095-1
  • Source: Constructive Approximation. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean Carlo e MENEGATTO, Valdir Antônio. Conditionally positive definite matrix valued kernels on Euclidean spaces. Constructive Approximation, v. 52, n. 1, p. 65-92, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00365-019-09478-x. Acesso em: 05 dez. 2025.
    • APA

      Guella, J. C., & Menegatto, V. A. (2020). Conditionally positive definite matrix valued kernels on Euclidean spaces. Constructive Approximation, 52( 1), 65-92. doi:10.1007/s00365-019-09478-x
    • NLM

      Guella JC, Menegatto VA. Conditionally positive definite matrix valued kernels on Euclidean spaces [Internet]. Constructive Approximation. 2020 ; 52( 1): 65-92.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00365-019-09478-x
    • Vancouver

      Guella JC, Menegatto VA. Conditionally positive definite matrix valued kernels on Euclidean spaces [Internet]. Constructive Approximation. 2020 ; 52( 1): 65-92.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00365-019-09478-x
  • Source: Zeitschrift für Analysis und ihre Anwendungen. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces. Zeitschrift für Analysis und ihre Anwendungen, v. 39, n. 4, p. 475-497, 2020Tradução . . Disponível em: https://doi.org/10.4171/ZAA/1669. Acesso em: 05 dez. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2020). Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces. Zeitschrift für Analysis und ihre Anwendungen, 39( 4), 475-497. doi:10.4171/ZAA/1669
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2020 ; 39( 4): 475-497.[citado 2025 dez. 05 ] Available from: https://doi.org/10.4171/ZAA/1669
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces [Internet]. Zeitschrift für Analysis und ihre Anwendungen. 2020 ; 39( 4): 475-497.[citado 2025 dez. 05 ] Available from: https://doi.org/10.4171/ZAA/1669
  • Source: Journal of the Australian Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, OPERADORES LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo e FERREIRA, Ruth N. e GUZZO JÚNIOR, Henrique. Generalized Jordan derivations on semiprime rings. Journal of the Australian Mathematical Society, v. 109, n. 1, p. 36-43, 2020Tradução . . Disponível em: https://doi.org/10.1017/s1446788719000259. Acesso em: 05 dez. 2025.
    • APA

      Ferreira, B. L. M., Ferreira, R. N., & Guzzo Júnior, H. (2020). Generalized Jordan derivations on semiprime rings. Journal of the Australian Mathematical Society, 109( 1), 36-43. doi:10.1017/s1446788719000259
    • NLM

      Ferreira BLM, Ferreira RN, Guzzo Júnior H. Generalized Jordan derivations on semiprime rings [Internet]. Journal of the Australian Mathematical Society. 2020 ; 109( 1): 36-43.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1017/s1446788719000259
    • Vancouver

      Ferreira BLM, Ferreira RN, Guzzo Júnior H. Generalized Jordan derivations on semiprime rings [Internet]. Journal of the Australian Mathematical Society. 2020 ; 109( 1): 36-43.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1017/s1446788719000259
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: PROBLEMAS DE VALORES INICIAIS, ESPAÇOS DE FRECHET, OPERADORES LINEARES, OPERADORES PSEUDODIFERENCIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis e SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, v. 484, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123612. Acesso em: 05 dez. 2025.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES, TOPOLOGIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, v. 55, n. 1, p. 169-184, 2020Tradução . . Disponível em: https://doi.org/10.12775/tmna.2019.093. Acesso em: 05 dez. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2020). Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, 55( 1), 169-184. doi:10.12775/tmna.2019.093
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2025 dez. 05 ] Available from: https://doi.org/10.12775/tmna.2019.093
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.[citado 2025 dez. 05 ] Available from: https://doi.org/10.12775/tmna.2019.093

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025