Filtros : "OPERADORES LINEARES" "Reino Unido" Removido: "Linear Algebra and its Applications" Limpar

Filtros



Refine with date range


  • Source: Forum of Mathematics, Sigma. Unidades: ICMC, IME

    Subjects: MECÂNICA QUÂNTICA, ANÁLISE ESPECTRAL, OPERADORES LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRU, Jean-Bernard e DE SIQUEIRA PEDRA, Walter e SANTOS, Alan Ramer dos. Scattering and pairing by exchange interactions. Forum of Mathematics, Sigma, v. 13, n. artigo e129, p. 1-84, 2025Tradução . . Disponível em: https://doi.org/10.1017/fms.2025.10083. Acesso em: 04 dez. 2025.
    • APA

      Bru, J. -B., De Siqueira Pedra, W., & Santos, A. R. dos. (2025). Scattering and pairing by exchange interactions. Forum of Mathematics, Sigma, 13( artigo e129), 1-84. doi:10.1017/fms.2025.10083
    • NLM

      Bru J-B, De Siqueira Pedra W, Santos AR dos. Scattering and pairing by exchange interactions [Internet]. Forum of Mathematics, Sigma. 2025 ; 13( artigo e129): 1-84.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1017/fms.2025.10083
    • Vancouver

      Bru J-B, De Siqueira Pedra W, Santos AR dos. Scattering and pairing by exchange interactions [Internet]. Forum of Mathematics, Sigma. 2025 ; 13( artigo e129): 1-84.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1017/fms.2025.10083
  • Source: Journal of the Australian Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, OPERADORES LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo e FERREIRA, Ruth N. e GUZZO JÚNIOR, Henrique. Generalized Jordan derivations on semiprime rings. Journal of the Australian Mathematical Society, v. 109, n. 1, p. 36-43, 2020Tradução . . Disponível em: https://doi.org/10.1017/s1446788719000259. Acesso em: 04 dez. 2025.
    • APA

      Ferreira, B. L. M., Ferreira, R. N., & Guzzo Júnior, H. (2020). Generalized Jordan derivations on semiprime rings. Journal of the Australian Mathematical Society, 109( 1), 36-43. doi:10.1017/s1446788719000259
    • NLM

      Ferreira BLM, Ferreira RN, Guzzo Júnior H. Generalized Jordan derivations on semiprime rings [Internet]. Journal of the Australian Mathematical Society. 2020 ; 109( 1): 36-43.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1017/s1446788719000259
    • Vancouver

      Ferreira BLM, Ferreira RN, Guzzo Júnior H. Generalized Jordan derivations on semiprime rings [Internet]. Journal of the Australian Mathematical Society. 2020 ; 109( 1): 36-43.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1017/s1446788719000259
  • Source: Nonlinear Analysis: Theory, Methods & Applications. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS VETORIAIS TOPOLÓGICOS, ESPAÇOS DE BANACH, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACOSTA, Maria D et al. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, v. 95, p. 323-332, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.na.2013.09.011. Acesso em: 04 dez. 2025.
    • APA

      Acosta, M. D., Becerra Guerrero, J., Choi, Y. S., Ciesielski, M., Kim, S. K., Lee, H. J., et al. (2014). The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, 95, 323-332. doi:10.1016/j.na.2013.09.011
    • NLM

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
    • Vancouver

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
  • Source: Applied Mathematics Letters. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES PERIÓDICAS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e PELICER, Maurício Luciano. Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations. Applied Mathematics Letters, v. No 2005, n. 11, p. 1265-1272, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.aml.2005.02.015. Acesso em: 04 dez. 2025.
    • APA

      Morales, E. A. H., & Pelicer, M. L. (2005). Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations. Applied Mathematics Letters, No 2005( 11), 1265-1272. doi:10.1016/j.aml.2005.02.015
    • NLM

      Morales EAH, Pelicer ML. Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations [Internet]. Applied Mathematics Letters. 2005 ; No 2005( 11): 1265-1272.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.aml.2005.02.015
    • Vancouver

      Morales EAH, Pelicer ML. Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations [Internet]. Applied Mathematics Letters. 2005 ; No 2005( 11): 1265-1272.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.aml.2005.02.015
  • Source: Computers and Mathematics with Applications. Unidade: ICMC

    Subjects: CONTROLABILIDADE, EQUAÇÕES DIFERENCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e PIERRI, M e TABOAS, Placido Zoega. A comment on the papers "A study on controllability of semilinear integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 47, No. 4/5, pp. 519-527, 2004) and "Controllability of neutral functional integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 39, No. 1/2, pp. 117-126, 2000) [Carta]. Computers and Mathematics with Applications. Kidlington: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.camwa.2005.06.004. Acesso em: 04 dez. 2025. , 2005
    • APA

      Morales, E. A. H., Pierri, M., & Taboas, P. Z. (2005). A comment on the papers "A study on controllability of semilinear integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 47, No. 4/5, pp. 519-527, 2004) and "Controllability of neutral functional integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 39, No. 1/2, pp. 117-126, 2000) [Carta]. Computers and Mathematics with Applications. Kidlington: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1016/j.camwa.2005.06.004
    • NLM

      Morales EAH, Pierri M, Taboas PZ. A comment on the papers "A study on controllability of semilinear integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 47, No. 4/5, pp. 519-527, 2004) and "Controllability of neutral functional integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 39, No. 1/2, pp. 117-126, 2000) [Carta] [Internet]. Computers and Mathematics with Applications. 2005 ; Oct.-No 2005( 8-9): 1291-1292.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.camwa.2005.06.004
    • Vancouver

      Morales EAH, Pierri M, Taboas PZ. A comment on the papers "A study on controllability of semilinear integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 47, No. 4/5, pp. 519-527, 2004) and "Controllability of neutral functional integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 39, No. 1/2, pp. 117-126, 2000) [Carta] [Internet]. Computers and Mathematics with Applications. 2005 ; Oct.-No 2005( 8-9): 1291-1292.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.camwa.2005.06.004

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025