Filtros : "OPERADORES LINEARES" "ICMC-SMA" Removido: "Linear Algebra and its Applications" Limpar

Filtros



Refine with date range


  • Source: Forum of Mathematics, Sigma. Unidades: ICMC, IME

    Subjects: MECÂNICA QUÂNTICA, ANÁLISE ESPECTRAL, OPERADORES LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRU, Jean-Bernard e DE SIQUEIRA PEDRA, Walter e SANTOS, Alan Ramer dos. Scattering and pairing by exchange interactions. Forum of Mathematics, Sigma, v. 13, n. artigo e129, p. 1-84, 2025Tradução . . Disponível em: https://doi.org/10.1017/fms.2025.10083. Acesso em: 04 dez. 2025.
    • APA

      Bru, J. -B., De Siqueira Pedra, W., & Santos, A. R. dos. (2025). Scattering and pairing by exchange interactions. Forum of Mathematics, Sigma, 13( artigo e129), 1-84. doi:10.1017/fms.2025.10083
    • NLM

      Bru J-B, De Siqueira Pedra W, Santos AR dos. Scattering and pairing by exchange interactions [Internet]. Forum of Mathematics, Sigma. 2025 ; 13( artigo e129): 1-84.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1017/fms.2025.10083
    • Vancouver

      Bru J-B, De Siqueira Pedra W, Santos AR dos. Scattering and pairing by exchange interactions [Internet]. Forum of Mathematics, Sigma. 2025 ; 13( artigo e129): 1-84.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1017/fms.2025.10083
  • Source: Journal of Complexity. Unidade: ICMC

    Subjects: OPERADORES LINEARES, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, SÉRIES DE FOURIER, ESPAÇOS DE HILBERT, ANÁLISE REAL, SÉRIES TRIGONOMÉTRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANT'ANNA, Douglas Azevedo e GONZALEZ, Karina Navarro e JORDÃO, Thaís. Sharp estimates for the covering numbers of the Weierstrass fractal kernel. Journal of Complexity, v. 74, p. 1-9, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jco.2022.101692. Acesso em: 04 dez. 2025.
    • APA

      Sant'Anna, D. A., Gonzalez, K. N., & Jordão, T. (2023). Sharp estimates for the covering numbers of the Weierstrass fractal kernel. Journal of Complexity, 74, 1-9. doi:10.1016/j.jco.2022.101692
    • NLM

      Sant'Anna DA, Gonzalez KN, Jordão T. Sharp estimates for the covering numbers of the Weierstrass fractal kernel [Internet]. Journal of Complexity. 2023 ; 74 1-9.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jco.2022.101692
    • Vancouver

      Sant'Anna DA, Gonzalez KN, Jordão T. Sharp estimates for the covering numbers of the Weierstrass fractal kernel [Internet]. Journal of Complexity. 2023 ; 74 1-9.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jco.2022.101692
  • Source: Annals of Functional Analysis. Unidade: ICMC

    Subjects: ESPAÇOS DE FRECHET, ESPAÇOS DE SOBOLEV, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis e SALGE, Luís Márcio. Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces. Annals of Functional Analysis, v. 13, n. 4, p. 1-17, 2022Tradução . . Disponível em: https://doi.org/10.1007/s43034-022-00198-1. Acesso em: 04 dez. 2025.
    • APA

      Aragão-Costa, É. R., & Salge, L. M. (2022). Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces. Annals of Functional Analysis, 13( 4), 1-17. doi:10.1007/s43034-022-00198-1
    • NLM

      Aragão-Costa ÉR, Salge LM. Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces [Internet]. Annals of Functional Analysis. 2022 ; 13( 4): 1-17.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1007/s43034-022-00198-1
    • Vancouver

      Aragão-Costa ÉR, Salge LM. Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces [Internet]. Annals of Functional Analysis. 2022 ; 13( 4): 1-17.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1007/s43034-022-00198-1
  • Source: Positivity. Unidade: ICMC

    Subjects: APROXIMAÇÃO, PROBLEMAS DE AUTOVALORES, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARRIJO, Angelina O e JORDÃO, Thaís. Approximation tools and decay rates for eigenvalues of integral operators on a general setting. Positivity, v. 24, n. 4, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11117-019-00706-z. Acesso em: 04 dez. 2025.
    • APA

      Carrijo, A. O., & Jordão, T. (2020). Approximation tools and decay rates for eigenvalues of integral operators on a general setting. Positivity, 24( 4), Se 2020. doi:10.1007/s11117-019-00706-z
    • NLM

      Carrijo AO, Jordão T. Approximation tools and decay rates for eigenvalues of integral operators on a general setting [Internet]. Positivity. 2020 ; 24( 4): Se 2020.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1007/s11117-019-00706-z
    • Vancouver

      Carrijo AO, Jordão T. Approximation tools and decay rates for eigenvalues of integral operators on a general setting [Internet]. Positivity. 2020 ; 24( 4): Se 2020.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1007/s11117-019-00706-z
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces. 2020, Anais.. São Carlos: ICMC-USP, 2020. Disponível em: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php. Acesso em: 04 dez. 2025.
    • APA

      Silva, E. R. da. (2020). Local solvability for a class of linear operators in Triebel-Lizorkin spaces. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Abstracts. 2020 ;[citado 2025 dez. 04 ] Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Abstracts. 2020 ;[citado 2025 dez. 04 ] Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: PROBLEMAS DE VALORES INICIAIS, ESPAÇOS DE FRECHET, OPERADORES LINEARES, OPERADORES PSEUDODIFERENCIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis e SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, v. 484, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123612. Acesso em: 04 dez. 2025.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, v. 267, n. 5, p. 3199-3231, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2019.04.002. Acesso em: 04 dez. 2025.
    • APA

      Silva, E. R. da. (2019). Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, 267( 5), 3199-3231. doi:10.1016/j.jde.2019.04.002
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jde.2019.04.002
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jde.2019.04.002
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CERNIAUSKAS, Wanderley A e DATTORI DA SILVA, Paulo Leandro. Solvability near the characteristic set for a class of first-order linear partial differential operators. 2018, Anais.. São Carlos: ICMC-USP, 2018. Disponível em: http://summer.icmc.usp.br/summers/summer18/pg_abstract.php. Acesso em: 04 dez. 2025.
    • APA

      Cerniauskas, W. A., & Dattori da Silva, P. L. (2018). Solvability near the characteristic set for a class of first-order linear partial differential operators. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer18/pg_abstract.php
    • NLM

      Cerniauskas WA, Dattori da Silva PL. Solvability near the characteristic set for a class of first-order linear partial differential operators [Internet]. Abstracts. 2018 ;[citado 2025 dez. 04 ] Available from: http://summer.icmc.usp.br/summers/summer18/pg_abstract.php
    • Vancouver

      Cerniauskas WA, Dattori da Silva PL. Solvability near the characteristic set for a class of first-order linear partial differential operators [Internet]. Abstracts. 2018 ;[citado 2025 dez. 04 ] Available from: http://summer.icmc.usp.br/summers/summer18/pg_abstract.php
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Besov spaces. 2018, Anais.. São Carlos: ICMC-USP, 2018. Disponível em: http://summer.icmc.usp.br/summers/summer18/pg_abstract.php. Acesso em: 04 dez. 2025.
    • APA

      Silva, E. R. da. (2018). Local solvability for a class of linear operators in Besov spaces. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer18/pg_abstract.php
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Besov spaces [Internet]. Abstracts. 2018 ;[citado 2025 dez. 04 ] Available from: http://summer.icmc.usp.br/summers/summer18/pg_abstract.php
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Besov spaces [Internet]. Abstracts. 2018 ;[citado 2025 dez. 04 ] Available from: http://summer.icmc.usp.br/summers/summer18/pg_abstract.php
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, v. 465, n. 1, p. Se 2018, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.04.077. Acesso em: 04 dez. 2025.
    • APA

      Silva, E. R. da. (2018). Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, 465( 1), Se 2018. doi:10.1016/j.jmaa.2018.04.077
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jmaa.2018.04.077
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jmaa.2018.04.077
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco et al. Geometrical proofs for the global solvability of systems. Mathematische Zeitschrift, v. No 2018, n. 16, p. 2367-2380, 2018Tradução . . Disponível em: https://doi.org/10.1002/mana.201700300. Acesso em: 04 dez. 2025.
    • APA

      Bergamasco, A. P., Parmeggiani, A., Zani, S. L., & Zugliani, G. A. (2018). Geometrical proofs for the global solvability of systems. Mathematische Zeitschrift, No 2018( 16), 2367-2380. doi:10.1002/mana.201700300
    • NLM

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Geometrical proofs for the global solvability of systems [Internet]. Mathematische Zeitschrift. 2018 ; No 2018( 16): 2367-2380.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1002/mana.201700300
    • Vancouver

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Geometrical proofs for the global solvability of systems [Internet]. Mathematische Zeitschrift. 2018 ; No 2018( 16): 2367-2380.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1002/mana.201700300
  • Source: Journal of Pseudo-Differential Operators and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco et al. Classes of globally solvable involutive systems. Journal of Pseudo-Differential Operators and Applications, v. 8, n. 4, p. 551-583, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11868-017-0217-9. Acesso em: 04 dez. 2025.
    • APA

      Bergamasco, A. P., Parmeggiani, A., Zani, S. L., & Zugliani, G. A. (2017). Classes of globally solvable involutive systems. Journal of Pseudo-Differential Operators and Applications, 8( 4), 551-583. doi:10.1007/s11868-017-0217-9
    • NLM

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Classes of globally solvable involutive systems [Internet]. Journal of Pseudo-Differential Operators and Applications. 2017 ; 8( 4): 551-583.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1007/s11868-017-0217-9
    • Vancouver

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Classes of globally solvable involutive systems [Internet]. Journal of Pseudo-Differential Operators and Applications. 2017 ; 8( 4): 551-583.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1007/s11868-017-0217-9
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: OPERADORES LINEARES, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COBO, M e VIDALON, Carlos Teobaldo Gutiérrez e OLIVEIRA, C. R. de. Cantor singular continuous spectrum for operators along interval exchange transformations. Proceedings of the American Mathematical Society, v. 136, n. 3, p. 923-930, 2008Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-07-09074-0. Acesso em: 04 dez. 2025.
    • APA

      Cobo, M., Vidalon, C. T. G., & Oliveira, C. R. de. (2008). Cantor singular continuous spectrum for operators along interval exchange transformations. Proceedings of the American Mathematical Society, 136( 3), 923-930. doi:10.1090/S0002-9939-07-09074-0
    • NLM

      Cobo M, Vidalon CTG, Oliveira CR de. Cantor singular continuous spectrum for operators along interval exchange transformations [Internet]. Proceedings of the American Mathematical Society. 2008 ; 136( 3): 923-930.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1090/S0002-9939-07-09074-0
    • Vancouver

      Cobo M, Vidalon CTG, Oliveira CR de. Cantor singular continuous spectrum for operators along interval exchange transformations [Internet]. Proceedings of the American Mathematical Society. 2008 ; 136( 3): 923-930.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1090/S0002-9939-07-09074-0
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAGANA, Toka e HENRIQUEZ, Hernán R e MORALES, Eduardo Alex Hernandez. Almost automorphic mild solutions to some partial neutral functional-differential equations and applications. Nonlinear Analysis, v. 69, n. 5-6, p. Se 2008, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.na.2007.06.048. Acesso em: 04 dez. 2025.
    • APA

      Diagana, T., Henriquez, H. R., & Morales, E. A. H. (2008). Almost automorphic mild solutions to some partial neutral functional-differential equations and applications. Nonlinear Analysis, 69( 5-6), Se 2008. doi:10.1016/j.na.2007.06.048
    • NLM

      Diagana T, Henriquez HR, Morales EAH. Almost automorphic mild solutions to some partial neutral functional-differential equations and applications [Internet]. Nonlinear Analysis. 2008 ; 69( 5-6): Se 2008.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.na.2007.06.048
    • Vancouver

      Diagana T, Henriquez HR, Morales EAH. Almost automorphic mild solutions to some partial neutral functional-differential equations and applications [Internet]. Nonlinear Analysis. 2008 ; 69( 5-6): Se 2008.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.na.2007.06.048
  • Source: Differential and Integral Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ANÁLISE HARMÔNICA, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAGANA, Toka e HENRIQUEZ, Hernán e MORALES, Eduardo Alex Hernandez. Asymptotically almost periodic solutions to some classes of second-order functional differential equations. Differential and Integral Equations, v. 21, n. 5-6, p. 575-600, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1356038633. Acesso em: 04 dez. 2025.
    • APA

      Diagana, T., Henriquez, H., & Morales, E. A. H. (2008). Asymptotically almost periodic solutions to some classes of second-order functional differential equations. Differential and Integral Equations, 21( 5-6), 575-600. Recuperado de https://projecteuclid.org/euclid.die/1356038633
    • NLM

      Diagana T, Henriquez H, Morales EAH. Asymptotically almost periodic solutions to some classes of second-order functional differential equations [Internet]. Differential and Integral Equations. 2008 ; 21( 5-6): 575-600.[citado 2025 dez. 04 ] Available from: https://projecteuclid.org/euclid.die/1356038633
    • Vancouver

      Diagana T, Henriquez H, Morales EAH. Asymptotically almost periodic solutions to some classes of second-order functional differential equations [Internet]. Differential and Integral Equations. 2008 ; 21( 5-6): 575-600.[citado 2025 dez. 04 ] Available from: https://projecteuclid.org/euclid.die/1356038633
  • Source: Journal of Nonlinear and Convex Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AGARWAL, Ravi P e DIAGANA, Toka e MORALES, Eduardo Alex Hernandez. Weighted pseudo almost periodic solutions to some partial neutral functional differential equations. Journal of Nonlinear and Convex Analysis, v. 8, n. 3, p. 397-415, 2007Tradução . . Disponível em: http://www.ybook.co.jp/online-p/JNCA/vol8/jncav8n3p397.pdf. Acesso em: 04 dez. 2025.
    • APA

      Agarwal, R. P., Diagana, T., & Morales, E. A. H. (2007). Weighted pseudo almost periodic solutions to some partial neutral functional differential equations. Journal of Nonlinear and Convex Analysis, 8( 3), 397-415. Recuperado de http://www.ybook.co.jp/online-p/JNCA/vol8/jncav8n3p397.pdf
    • NLM

      Agarwal RP, Diagana T, Morales EAH. Weighted pseudo almost periodic solutions to some partial neutral functional differential equations [Internet]. Journal of Nonlinear and Convex Analysis. 2007 ; 8( 3): 397-415.[citado 2025 dez. 04 ] Available from: http://www.ybook.co.jp/online-p/JNCA/vol8/jncav8n3p397.pdf
    • Vancouver

      Agarwal RP, Diagana T, Morales EAH. Weighted pseudo almost periodic solutions to some partial neutral functional differential equations [Internet]. Journal of Nonlinear and Convex Analysis. 2007 ; 8( 3): 397-415.[citado 2025 dez. 04 ] Available from: http://www.ybook.co.jp/online-p/JNCA/vol8/jncav8n3p397.pdf
  • Source: Nonlinear Analysis : Theory, Methods and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, CONTROLABILIDADE, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez. A comment on the papers [Carta]: Controllability results for functional semilinear differential inclusions in Fréchet spaces [Nonlinear Anal. 61 (3) (2005) 405–423] and Controllability of impulsive neutral functional differential inclusions with infinite delay [Nonlinear Anal. 60 (8) (2005) 1533–1552]. Nonlinear Analysis : Theory, Methods and Applications. Kidlington: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.na.2006.03.014. Acesso em: 04 dez. 2025. , 2007
    • APA

      Morales, E. A. H. (2007). A comment on the papers [Carta]: Controllability results for functional semilinear differential inclusions in Fréchet spaces [Nonlinear Anal. 61 (3) (2005) 405–423] and Controllability of impulsive neutral functional differential inclusions with infinite delay [Nonlinear Anal. 60 (8) (2005) 1533–1552]. Nonlinear Analysis : Theory, Methods and Applications. Kidlington: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1016/j.na.2006.03.014
    • NLM

      Morales EAH. A comment on the papers [Carta]: Controllability results for functional semilinear differential inclusions in Fréchet spaces [Nonlinear Anal. 61 (3) (2005) 405–423] and Controllability of impulsive neutral functional differential inclusions with infinite delay [Nonlinear Anal. 60 (8) (2005) 1533–1552] [Internet]. Nonlinear Analysis : Theory, Methods and Applications. 2007 ; 66( 10): 2243-2245.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.na.2006.03.014
    • Vancouver

      Morales EAH. A comment on the papers [Carta]: Controllability results for functional semilinear differential inclusions in Fréchet spaces [Nonlinear Anal. 61 (3) (2005) 405–423] and Controllability of impulsive neutral functional differential inclusions with infinite delay [Nonlinear Anal. 60 (8) (2005) 1533–1552] [Internet]. Nonlinear Analysis : Theory, Methods and Applications. 2007 ; 66( 10): 2243-2245.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.na.2006.03.014
  • Source: Applied Mathematics Letters. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES PERIÓDICAS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e PELICER, Maurício Luciano. Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations. Applied Mathematics Letters, v. No 2005, n. 11, p. 1265-1272, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.aml.2005.02.015. Acesso em: 04 dez. 2025.
    • APA

      Morales, E. A. H., & Pelicer, M. L. (2005). Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations. Applied Mathematics Letters, No 2005( 11), 1265-1272. doi:10.1016/j.aml.2005.02.015
    • NLM

      Morales EAH, Pelicer ML. Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations [Internet]. Applied Mathematics Letters. 2005 ; No 2005( 11): 1265-1272.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.aml.2005.02.015
    • Vancouver

      Morales EAH, Pelicer ML. Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations [Internet]. Applied Mathematics Letters. 2005 ; No 2005( 11): 1265-1272.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.aml.2005.02.015
  • Source: Computers and Mathematics with Applications. Unidade: ICMC

    Subjects: CONTROLABILIDADE, EQUAÇÕES DIFERENCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e PIERRI, M e TABOAS, Placido Zoega. A comment on the papers "A study on controllability of semilinear integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 47, No. 4/5, pp. 519-527, 2004) and "Controllability of neutral functional integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 39, No. 1/2, pp. 117-126, 2000) [Carta]. Computers and Mathematics with Applications. Kidlington: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.camwa.2005.06.004. Acesso em: 04 dez. 2025. , 2005
    • APA

      Morales, E. A. H., Pierri, M., & Taboas, P. Z. (2005). A comment on the papers "A study on controllability of semilinear integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 47, No. 4/5, pp. 519-527, 2004) and "Controllability of neutral functional integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 39, No. 1/2, pp. 117-126, 2000) [Carta]. Computers and Mathematics with Applications. Kidlington: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1016/j.camwa.2005.06.004
    • NLM

      Morales EAH, Pierri M, Taboas PZ. A comment on the papers "A study on controllability of semilinear integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 47, No. 4/5, pp. 519-527, 2004) and "Controllability of neutral functional integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 39, No. 1/2, pp. 117-126, 2000) [Carta] [Internet]. Computers and Mathematics with Applications. 2005 ; Oct.-No 2005( 8-9): 1291-1292.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.camwa.2005.06.004
    • Vancouver

      Morales EAH, Pierri M, Taboas PZ. A comment on the papers "A study on controllability of semilinear integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 47, No. 4/5, pp. 519-527, 2004) and "Controllability of neutral functional integrodifferential systems in Banach spaces" (Computers Math. Applic., Vol. 39, No. 1/2, pp. 117-126, 2000) [Carta] [Internet]. Computers and Mathematics with Applications. 2005 ; Oct.-No 2005( 8-9): 1291-1292.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.camwa.2005.06.004
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez. Existence results for partial neutral functional integrodifferential equations with unbounded delay. Journal of Mathematical Analysis and Applications, v. 292, n. 1, p. 194-210, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2003.11.052. Acesso em: 04 dez. 2025.
    • APA

      Morales, E. A. H. (2004). Existence results for partial neutral functional integrodifferential equations with unbounded delay. Journal of Mathematical Analysis and Applications, 292( 1), 194-210. doi:10.1016/j.jmaa.2003.11.052
    • NLM

      Morales EAH. Existence results for partial neutral functional integrodifferential equations with unbounded delay [Internet]. Journal of Mathematical Analysis and Applications. 2004 ; 292( 1): 194-210.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jmaa.2003.11.052
    • Vancouver

      Morales EAH. Existence results for partial neutral functional integrodifferential equations with unbounded delay [Internet]. Journal of Mathematical Analysis and Applications. 2004 ; 292( 1): 194-210.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jmaa.2003.11.052

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025