Filtros : "OPERADORES LINEARES" "Indexado no MathSciNet" Removido: "Computers and Mathematics with Applications" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES DIFERENCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Spectral and probabilistic analysis of third-order linear abstract differential equations. Journal of Dynamics and Differential Equations, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-025-10418-6. Acesso em: 05 dez. 2025.
    • APA

      Bezerra, F. D. M., López-Lázaro, H., & Takaessu Junior, C. R. (2025). Spectral and probabilistic analysis of third-order linear abstract differential equations. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-025-10418-6
    • NLM

      Bezerra FDM, López-Lázaro H, Takaessu Junior CR. Spectral and probabilistic analysis of third-order linear abstract differential equations [Internet]. Journal of Dynamics and Differential Equations. 2025 ;[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10884-025-10418-6
    • Vancouver

      Bezerra FDM, López-Lázaro H, Takaessu Junior CR. Spectral and probabilistic analysis of third-order linear abstract differential equations [Internet]. Journal of Dynamics and Differential Equations. 2025 ;[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10884-025-10418-6
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B, v. 30, n. 2, p. 496-508, 2025Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2024098. Acesso em: 05 dez. 2025.
    • APA

      Bezerra, F. D. M., Santos, L. A., Silva, M., & Takaessu Junior, C. R. (2025). Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B, 30( 2), 496-508. doi:10.3934/dcdsb.2024098
    • NLM

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2025 ; 30( 2): 496-508.[citado 2025 dez. 05 ] Available from: https://doi.org/10.3934/dcdsb.2024098
    • Vancouver

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2025 ; 30( 2): 496-508.[citado 2025 dez. 05 ] Available from: https://doi.org/10.3934/dcdsb.2024098
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. A higher-order non-autonomous semilinear parabolic equation. Bulletin of the Brazilian Mathematical Society : New Series, v. 55, n. Ja 2024, p. 1-17, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00574-023-00381-5. Acesso em: 05 dez. 2025.
    • APA

      Belluzi, M., Bezerra, F. D. M., Nascimento, M. J. D., & Santos, L. A. (2024). A higher-order non-autonomous semilinear parabolic equation. Bulletin of the Brazilian Mathematical Society : New Series, 55( Ja 2024), 1-17. doi:10.1007/s00574-023-00381-5
    • NLM

      Belluzi M, Bezerra FDM, Nascimento MJD, Santos LA. A higher-order non-autonomous semilinear parabolic equation [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55( Ja 2024): 1-17.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00574-023-00381-5
    • Vancouver

      Belluzi M, Bezerra FDM, Nascimento MJD, Santos LA. A higher-order non-autonomous semilinear parabolic equation [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55( Ja 2024): 1-17.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00574-023-00381-5
  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, OPERADORES LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions. Journal of Evolution Equations, v. 24, n. 2, p. 1-37, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00028-024-00961-y. Acesso em: 05 dez. 2025.
    • APA

      Belluzi, M. (2024). Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions. Journal of Evolution Equations, 24( 2), 1-37. doi:10.1007/s00028-024-00961-y
    • NLM

      Belluzi M. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions [Internet]. Journal of Evolution Equations. 2024 ; 24( 2): 1-37.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00028-024-00961-y
    • Vancouver

      Belluzi M. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions [Internet]. Journal of Evolution Equations. 2024 ; 24( 2): 1-37.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00028-024-00961-y
  • Source: Journal of Complexity. Unidade: ICMC

    Subjects: OPERADORES LINEARES, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, SÉRIES DE FOURIER, ESPAÇOS DE HILBERT, ANÁLISE REAL, SÉRIES TRIGONOMÉTRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANT'ANNA, Douglas Azevedo e GONZALEZ, Karina Navarro e JORDÃO, Thaís. Sharp estimates for the covering numbers of the Weierstrass fractal kernel. Journal of Complexity, v. 74, p. 1-9, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jco.2022.101692. Acesso em: 05 dez. 2025.
    • APA

      Sant'Anna, D. A., Gonzalez, K. N., & Jordão, T. (2023). Sharp estimates for the covering numbers of the Weierstrass fractal kernel. Journal of Complexity, 74, 1-9. doi:10.1016/j.jco.2022.101692
    • NLM

      Sant'Anna DA, Gonzalez KN, Jordão T. Sharp estimates for the covering numbers of the Weierstrass fractal kernel [Internet]. Journal of Complexity. 2023 ; 74 1-9.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jco.2022.101692
    • Vancouver

      Sant'Anna DA, Gonzalez KN, Jordão T. Sharp estimates for the covering numbers of the Weierstrass fractal kernel [Internet]. Journal of Complexity. 2023 ; 74 1-9.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jco.2022.101692
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach. Results in Mathematics, v. 78, n. 6, p. 1-14, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00025-023-01999-z. Acesso em: 05 dez. 2025.
    • APA

      Bezerra, F. D. M., Santos, L. A., Silva, M. J. M. da, & Takaessu Junior, C. R. (2023). A note on the spectral analysis of some fourth-order differential equations with a semigroup approach. Results in Mathematics, 78( 6), 1-14. doi:10.1007/s00025-023-01999-z
    • NLM

      Bezerra FDM, Santos LA, Silva MJM da, Takaessu Junior CR. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach [Internet]. Results in Mathematics. 2023 ; 78( 6): 1-14.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00025-023-01999-z
    • Vancouver

      Bezerra FDM, Santos LA, Silva MJM da, Takaessu Junior CR. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach [Internet]. Results in Mathematics. 2023 ; 78( 6): 1-14.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00025-023-01999-z
  • Source: Annals of Functional Analysis. Unidade: ICMC

    Subjects: ESPAÇOS DE FRECHET, ESPAÇOS DE SOBOLEV, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis e SALGE, Luís Márcio. Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces. Annals of Functional Analysis, v. 13, n. 4, p. 1-17, 2022Tradução . . Disponível em: https://doi.org/10.1007/s43034-022-00198-1. Acesso em: 05 dez. 2025.
    • APA

      Aragão-Costa, É. R., & Salge, L. M. (2022). Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces. Annals of Functional Analysis, 13( 4), 1-17. doi:10.1007/s43034-022-00198-1
    • NLM

      Aragão-Costa ÉR, Salge LM. Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces [Internet]. Annals of Functional Analysis. 2022 ; 13( 4): 1-17.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s43034-022-00198-1
    • Vancouver

      Aragão-Costa ÉR, Salge LM. Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces [Internet]. Annals of Functional Analysis. 2022 ; 13( 4): 1-17.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s43034-022-00198-1
  • Source: Positivity. Unidade: ICMC

    Subjects: APROXIMAÇÃO, PROBLEMAS DE AUTOVALORES, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARRIJO, Angelina O e JORDÃO, Thaís. Approximation tools and decay rates for eigenvalues of integral operators on a general setting. Positivity, v. 24, n. 4, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11117-019-00706-z. Acesso em: 05 dez. 2025.
    • APA

      Carrijo, A. O., & Jordão, T. (2020). Approximation tools and decay rates for eigenvalues of integral operators on a general setting. Positivity, 24( 4), Se 2020. doi:10.1007/s11117-019-00706-z
    • NLM

      Carrijo AO, Jordão T. Approximation tools and decay rates for eigenvalues of integral operators on a general setting [Internet]. Positivity. 2020 ; 24( 4): Se 2020.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11117-019-00706-z
    • Vancouver

      Carrijo AO, Jordão T. Approximation tools and decay rates for eigenvalues of integral operators on a general setting [Internet]. Positivity. 2020 ; 24( 4): Se 2020.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11117-019-00706-z
  • Source: Constructive Approximation. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean Carlo e MENEGATTO, Valdir Antônio. Conditionally positive definite matrix valued kernels on Euclidean spaces. Constructive Approximation, v. 52, n. 1, p. 65-92, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00365-019-09478-x. Acesso em: 05 dez. 2025.
    • APA

      Guella, J. C., & Menegatto, V. A. (2020). Conditionally positive definite matrix valued kernels on Euclidean spaces. Constructive Approximation, 52( 1), 65-92. doi:10.1007/s00365-019-09478-x
    • NLM

      Guella JC, Menegatto VA. Conditionally positive definite matrix valued kernels on Euclidean spaces [Internet]. Constructive Approximation. 2020 ; 52( 1): 65-92.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00365-019-09478-x
    • Vancouver

      Guella JC, Menegatto VA. Conditionally positive definite matrix valued kernels on Euclidean spaces [Internet]. Constructive Approximation. 2020 ; 52( 1): 65-92.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00365-019-09478-x
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: PROBLEMAS DE VALORES INICIAIS, ESPAÇOS DE FRECHET, OPERADORES LINEARES, OPERADORES PSEUDODIFERENCIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis e SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, v. 484, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123612. Acesso em: 05 dez. 2025.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, v. 267, n. 5, p. 3199-3231, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2019.04.002. Acesso em: 05 dez. 2025.
    • APA

      Silva, E. R. da. (2019). Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, 267( 5), 3199-3231. doi:10.1016/j.jde.2019.04.002
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jde.2019.04.002
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jde.2019.04.002
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, v. 465, n. 1, p. Se 2018, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.04.077. Acesso em: 05 dez. 2025.
    • APA

      Silva, E. R. da. (2018). Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, 465( 1), Se 2018. doi:10.1016/j.jmaa.2018.04.077
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2018.04.077
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2018.04.077
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco et al. Geometrical proofs for the global solvability of systems. Mathematische Zeitschrift, v. No 2018, n. 16, p. 2367-2380, 2018Tradução . . Disponível em: https://doi.org/10.1002/mana.201700300. Acesso em: 05 dez. 2025.
    • APA

      Bergamasco, A. P., Parmeggiani, A., Zani, S. L., & Zugliani, G. A. (2018). Geometrical proofs for the global solvability of systems. Mathematische Zeitschrift, No 2018( 16), 2367-2380. doi:10.1002/mana.201700300
    • NLM

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Geometrical proofs for the global solvability of systems [Internet]. Mathematische Zeitschrift. 2018 ; No 2018( 16): 2367-2380.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1002/mana.201700300
    • Vancouver

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Geometrical proofs for the global solvability of systems [Internet]. Mathematische Zeitschrift. 2018 ; No 2018( 16): 2367-2380.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1002/mana.201700300
  • Source: Journal of Pseudo-Differential Operators and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco et al. Classes of globally solvable involutive systems. Journal of Pseudo-Differential Operators and Applications, v. 8, n. 4, p. 551-583, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11868-017-0217-9. Acesso em: 05 dez. 2025.
    • APA

      Bergamasco, A. P., Parmeggiani, A., Zani, S. L., & Zugliani, G. A. (2017). Classes of globally solvable involutive systems. Journal of Pseudo-Differential Operators and Applications, 8( 4), 551-583. doi:10.1007/s11868-017-0217-9
    • NLM

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Classes of globally solvable involutive systems [Internet]. Journal of Pseudo-Differential Operators and Applications. 2017 ; 8( 4): 551-583.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11868-017-0217-9
    • Vancouver

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Classes of globally solvable involutive systems [Internet]. Journal of Pseudo-Differential Operators and Applications. 2017 ; 8( 4): 551-583.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11868-017-0217-9
  • Source: Nonlinear Analysis: Theory, Methods & Applications. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS VETORIAIS TOPOLÓGICOS, ESPAÇOS DE BANACH, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACOSTA, Maria D et al. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, v. 95, p. 323-332, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.na.2013.09.011. Acesso em: 05 dez. 2025.
    • APA

      Acosta, M. D., Becerra Guerrero, J., Choi, Y. S., Ciesielski, M., Kim, S. K., Lee, H. J., et al. (2014). The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions. Nonlinear Analysis: Theory, Methods & Applications, 95, 323-332. doi:10.1016/j.na.2013.09.011
    • NLM

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
    • Vancouver

      Acosta MD, Becerra Guerrero J, Choi YS, Ciesielski M, Kim SK, Lee HJ, Lourenço ML, Martín M. The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions [Internet]. Nonlinear Analysis: Theory, Methods & Applications. 2014 ; 95 323-332.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2013.09.011
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subjects: OPERADORES LINEARES, TEORIA DOS GRAFOS, MATEMÁTICA DA COMPUTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BACHOC, Christine et al. Spectral bounds for the independence ratio and the chromatic number of an operator. Israel Journal of Mathematics, v. 202, n. 1, p. 227-254, 2014Tradução . . Disponível em: https://doi.org/10.1007/s11856-014-1070-7. Acesso em: 05 dez. 2025.
    • APA

      Bachoc, C., DeCorte, E., Oliveira Filho, F. M. de, & Vallentin, F. (2014). Spectral bounds for the independence ratio and the chromatic number of an operator. Israel Journal of Mathematics, 202( 1), 227-254. doi:10.1007/s11856-014-1070-7
    • NLM

      Bachoc C, DeCorte E, Oliveira Filho FM de, Vallentin F. Spectral bounds for the independence ratio and the chromatic number of an operator [Internet]. Israel Journal of Mathematics. 2014 ; 202( 1): 227-254.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11856-014-1070-7
    • Vancouver

      Bachoc C, DeCorte E, Oliveira Filho FM de, Vallentin F. Spectral bounds for the independence ratio and the chromatic number of an operator [Internet]. Israel Journal of Mathematics. 2014 ; 202( 1): 227-254.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s11856-014-1070-7
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, OPERADORES LINEARES, ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. e SERGEICHUK, Vladimir V. Miniversal deformations of matrices under *congruence and reducing transformations. Linear Algebra and its Applications, v. 446, p. 388-420, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2014.01.016. Acesso em: 05 dez. 2025.
    • APA

      Dmytryshyn, A. R., & Sergeichuk, V. V. (2014). Miniversal deformations of matrices under *congruence and reducing transformations. Linear Algebra and its Applications, 446, 388-420. doi:10.1016/j.laa.2014.01.016
    • NLM

      Dmytryshyn AR, Sergeichuk VV. Miniversal deformations of matrices under *congruence and reducing transformations [Internet]. Linear Algebra and its Applications. 2014 ; 446 388-420.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.01.016
    • Vancouver

      Dmytryshyn AR, Sergeichuk VV. Miniversal deformations of matrices under *congruence and reducing transformations [Internet]. Linear Algebra and its Applications. 2014 ; 446 388-420.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2014.01.016
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: OPERADORES LINEARES, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COBO, M e VIDALON, Carlos Teobaldo Gutiérrez e OLIVEIRA, C. R. de. Cantor singular continuous spectrum for operators along interval exchange transformations. Proceedings of the American Mathematical Society, v. 136, n. 3, p. 923-930, 2008Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-07-09074-0. Acesso em: 05 dez. 2025.
    • APA

      Cobo, M., Vidalon, C. T. G., & Oliveira, C. R. de. (2008). Cantor singular continuous spectrum for operators along interval exchange transformations. Proceedings of the American Mathematical Society, 136( 3), 923-930. doi:10.1090/S0002-9939-07-09074-0
    • NLM

      Cobo M, Vidalon CTG, Oliveira CR de. Cantor singular continuous spectrum for operators along interval exchange transformations [Internet]. Proceedings of the American Mathematical Society. 2008 ; 136( 3): 923-930.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1090/S0002-9939-07-09074-0
    • Vancouver

      Cobo M, Vidalon CTG, Oliveira CR de. Cantor singular continuous spectrum for operators along interval exchange transformations [Internet]. Proceedings of the American Mathematical Society. 2008 ; 136( 3): 923-930.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1090/S0002-9939-07-09074-0
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: FUNÇÕES PERIÓDICAS, PROBLEMA DE CAUCHY, ESPAÇOS DE BANACH, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENRIQUEZ, Hernán R e PIERRI, Michelle e TABOAS, Placido Zoega. On S-asymptotically ω-periodic functions on Banach spaces and applications. Journal of Mathematical Analysis and Applications, v. 343, n. 2, p. 1119-1130, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2008.02.023. Acesso em: 05 dez. 2025.
    • APA

      Henriquez, H. R., Pierri, M., & Taboas, P. Z. (2008). On S-asymptotically ω-periodic functions on Banach spaces and applications. Journal of Mathematical Analysis and Applications, 343( 2), 1119-1130. doi:10.1016/j.jmaa.2008.02.023
    • NLM

      Henriquez HR, Pierri M, Taboas PZ. On S-asymptotically ω-periodic functions on Banach spaces and applications [Internet]. Journal of Mathematical Analysis and Applications. 2008 ; 343( 2): 1119-1130.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2008.02.023
    • Vancouver

      Henriquez HR, Pierri M, Taboas PZ. On S-asymptotically ω-periodic functions on Banach spaces and applications [Internet]. Journal of Mathematical Analysis and Applications. 2008 ; 343( 2): 1119-1130.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2008.02.023
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAGANA, Toka e HENRIQUEZ, Hernán R e MORALES, Eduardo Alex Hernandez. Almost automorphic mild solutions to some partial neutral functional-differential equations and applications. Nonlinear Analysis, v. 69, n. 5-6, p. Se 2008, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.na.2007.06.048. Acesso em: 05 dez. 2025.
    • APA

      Diagana, T., Henriquez, H. R., & Morales, E. A. H. (2008). Almost automorphic mild solutions to some partial neutral functional-differential equations and applications. Nonlinear Analysis, 69( 5-6), Se 2008. doi:10.1016/j.na.2007.06.048
    • NLM

      Diagana T, Henriquez HR, Morales EAH. Almost automorphic mild solutions to some partial neutral functional-differential equations and applications [Internet]. Nonlinear Analysis. 2008 ; 69( 5-6): Se 2008.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2007.06.048
    • Vancouver

      Diagana T, Henriquez HR, Morales EAH. Almost automorphic mild solutions to some partial neutral functional-differential equations and applications [Internet]. Nonlinear Analysis. 2008 ; 69( 5-6): Se 2008.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.na.2007.06.048

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025