Filtros : "MATEMÁTICA" "Financiamento FCT" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Nonlinear Science. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, PROBLEMA DE CAUCHY, EQUAÇÕES NÃO LINEARES, NEURÔNIOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AVITABILE, Daniele e CHEMETOV, Nikolai Vasilievich e LIMA, P. M. Well-posedness and regularity of solutions to neural field problems with dendritic processing. Journal of Nonlinear Science, v. 34, n. 4, p. 1-30, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00332-024-10055-1. Acesso em: 16 nov. 2025.
    • APA

      Avitabile, D., Chemetov, N. V., & Lima, P. M. (2024). Well-posedness and regularity of solutions to neural field problems with dendritic processing. Journal of Nonlinear Science, 34( 4), 1-30. doi:10.1007/s00332-024-10055-1
    • NLM

      Avitabile D, Chemetov NV, Lima PM. Well-posedness and regularity of solutions to neural field problems with dendritic processing [Internet]. Journal of Nonlinear Science. 2024 ; 34( 4): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s00332-024-10055-1
    • Vancouver

      Avitabile D, Chemetov NV, Lima PM. Well-posedness and regularity of solutions to neural field problems with dendritic processing [Internet]. Journal of Nonlinear Science. 2024 ; 34( 4): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s00332-024-10055-1
  • Fonte: Journal of Optimization Theory and Applications. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. A boundary control problem for stochastic 2D-navier–stokes equations. Journal of Optimization Theory and Applications, v. 203, n. 2, p. 1847-1879, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10957-024-02416-3. Acesso em: 16 nov. 2025.
    • APA

      Chemetov, N. V., & Cipriano, F. (2024). A boundary control problem for stochastic 2D-navier–stokes equations. Journal of Optimization Theory and Applications, 203( 2), 1847-1879. doi:10.1007/s10957-024-02416-3
    • NLM

      Chemetov NV, Cipriano F. A boundary control problem for stochastic 2D-navier–stokes equations [Internet]. Journal of Optimization Theory and Applications. 2024 ; 203( 2): 1847-1879.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10957-024-02416-3
    • Vancouver

      Chemetov NV, Cipriano F. A boundary control problem for stochastic 2D-navier–stokes equations [Internet]. Journal of Optimization Theory and Applications. 2024 ; 203( 2): 1847-1879.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10957-024-02416-3
  • Fonte: Nonlinear Differential Equations and Applications No DEA. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge e NASCIMENTO, Wanderley Nunes do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. Nonlinear Differential Equations and Applications No DEA, v. 31, n. 23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00030-023-00909-0. Acesso em: 16 nov. 2025.
    • APA

      Ebert, M. R., Marques, J., & Nascimento, W. N. do. (2024). The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. Nonlinear Differential Equations and Applications No DEA, 31( 23). doi:10.1007/s00030-023-00909-0
    • NLM

      Ebert MR, Marques J, Nascimento WN do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping [Internet]. Nonlinear Differential Equations and Applications No DEA. 2024 ; 31( 23):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s00030-023-00909-0
    • Vancouver

      Ebert MR, Marques J, Nascimento WN do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping [Internet]. Nonlinear Differential Equations and Applications No DEA. 2024 ; 31( 23):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s00030-023-00909-0
  • Fonte: Mathematical Methods in the Applied Sciences. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, EQUAÇÕES DA ONDA, TORNADOS, ESPAÇOS MÉTRICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, v. 46, p. 2602-2635, 2023Tradução . . Disponível em: https://doi.org/10.1002/mma.8663. Acesso em: 16 nov. 2025.
    • APA

      Ebert, M. R., & Marques, J. (2023). Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, 46, 2602-2635. doi:10.1002/mma.8663
    • NLM

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.8663
    • Vancouver

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1002/mma.8663
  • Fonte: Fluids Under Controls. Unidade: FFCLRP

    Assuntos: FLUÍDOS COMPLEXOS, MECÂNICA DOS FLUÍDOS, MATEMÁTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. Well-posedness and optimal control for 2-D stochastic second-grade fluids. Fluids Under Controls. Tradução . Cham: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 2023. . Disponível em: https://doi.org/10.1007/978-3-031-27625-5_2. Acesso em: 16 nov. 2025.
    • APA

      Chemetov, N. V., & Cipriano, F. (2023). Well-posedness and optimal control for 2-D stochastic second-grade fluids. In Fluids Under Controls. Cham: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1007/978-3-031-27625-5_2
    • NLM

      Chemetov NV, Cipriano F. Well-posedness and optimal control for 2-D stochastic second-grade fluids [Internet]. In: Fluids Under Controls. Cham: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo; 2023. [citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/978-3-031-27625-5_2
    • Vancouver

      Chemetov NV, Cipriano F. Well-posedness and optimal control for 2-D stochastic second-grade fluids [Internet]. In: Fluids Under Controls. Cham: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo; 2023. [citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/978-3-031-27625-5_2
  • Fonte: Electronic Journal of Differential Equations. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, EQUAÇÕES DE NAVIER-STOKES, SINGULARIDADES, FLUÍDOS COMPLEXOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, Adilson e CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. Uniqueness for optimal control problems of two-dimensional second grade fluids. Electronic Journal of Differential Equations, v. 2022, n. 22, p. 1-12, 2022Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf. Acesso em: 16 nov. 2025.
    • APA

      Almeida, A., Chemetov, N. V., & Cipriano, F. (2022). Uniqueness for optimal control problems of two-dimensional second grade fluids. Electronic Journal of Differential Equations, 2022( 22), 1-12. Recuperado de https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf
    • NLM

      Almeida A, Chemetov NV, Cipriano F. Uniqueness for optimal control problems of two-dimensional second grade fluids [Internet]. Electronic Journal of Differential Equations. 2022 ; 2022( 22): 1-12.[citado 2025 nov. 16 ] Available from: https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf
    • Vancouver

      Almeida A, Chemetov NV, Cipriano F. Uniqueness for optimal control problems of two-dimensional second grade fluids [Internet]. Electronic Journal of Differential Equations. 2022 ; 2022( 22): 1-12.[citado 2025 nov. 16 ] Available from: https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf
  • Fonte: Anomalies in Partial Differential Equations. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS, PROBLEMA DE CAUCHY

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge. Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed. Anomalies in Partial Differential Equations. Tradução . Cham: Springer, 2021. . Disponível em: https://doi.org/10.1007/978-3-030-61346-4_11. Acesso em: 16 nov. 2025.
    • APA

      Ebert, M. R., & Marques, J. (2021). Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed. In Anomalies in Partial Differential Equations. Cham: Springer. doi:10.1007/978-3-030-61346-4_11
    • NLM

      Ebert MR, Marques J. Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed [Internet]. In: Anomalies in Partial Differential Equations. Cham: Springer; 2021. [citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/978-3-030-61346-4_11
    • Vancouver

      Ebert MR, Marques J. Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed [Internet]. In: Anomalies in Partial Differential Equations. Cham: Springer; 2021. [citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/978-3-030-61346-4_11

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025