Filtros : "HOMOLOGIA" "MIRZAII, BEHROOZ" Limpar

Filtros



Refine with date range


  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: K-TEORIA, GRUPOS LINEARES, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRZAII, Behrooz e PÉREZ, Elvis Torres. A refined Bloch-Wigner exact sequence in characteristic 2. Journal of Algebra, v. No 2024, p. 141-158, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2024.05.011. Acesso em: 09 nov. 2024.
    • APA

      Mirzaii, B., & Pérez, E. T. (2024). A refined Bloch-Wigner exact sequence in characteristic 2. Journal of Algebra, No 2024, 141-158. doi:10.1016/j.jalgebra.2024.05.011
    • NLM

      Mirzaii B, Pérez ET. A refined Bloch-Wigner exact sequence in characteristic 2 [Internet]. Journal of Algebra. 2024 ; No 2024 141-158.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.05.011
    • Vancouver

      Mirzaii B, Pérez ET. A refined Bloch-Wigner exact sequence in characteristic 2 [Internet]. Journal of Algebra. 2024 ; No 2024 141-158.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.05.011
  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: K-TEORIA, COHOMOLOGIA DE GRUPOS, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRZAII, Behrooz e PÉREZ, Elvis Torres. A refined scissors congruence group and the third homology of 'SL IND. 2'. Journal of Pure and Applied Algebra, v. 228, n. Ja 2024, p. 1-28, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2024.107615. Acesso em: 09 nov. 2024.
    • APA

      Mirzaii, B., & Pérez, E. T. (2024). A refined scissors congruence group and the third homology of 'SL IND. 2'. Journal of Pure and Applied Algebra, 228( Ja 2024), 1-28. doi:10.1016/j.jpaa.2024.107615
    • NLM

      Mirzaii B, Pérez ET. A refined scissors congruence group and the third homology of 'SL IND. 2' [Internet]. Journal of Pure and Applied Algebra. 2024 ; 228( Ja 2024): 1-28.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jpaa.2024.107615
    • Vancouver

      Mirzaii B, Pérez ET. A refined scissors congruence group and the third homology of 'SL IND. 2' [Internet]. Journal of Pure and Applied Algebra. 2024 ; 228( Ja 2024): 1-28.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jpaa.2024.107615
  • Source: Pacific Journal of Mathematics. Unidade: ICMC

    Subjects: HOMOLOGIA, TEORIA DOS GRUPOS, COHOMOLOGIA DE GRUPOS ABELIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRZAII, Behrooz e MOKARI, Fatemeh Y. Virtual rational Betti numbers of nilpotent-by-abelian groups. Pacific Journal of Mathematics, v. 283, n. 2, p. 381-403, 2016Tradução . . Disponível em: https://doi.org/10.2140/pjm.2016.283.381. Acesso em: 09 nov. 2024.
    • APA

      Mirzaii, B., & Mokari, F. Y. (2016). Virtual rational Betti numbers of nilpotent-by-abelian groups. Pacific Journal of Mathematics, 283( 2), 381-403. doi:10.2140/pjm.2016.283.381
    • NLM

      Mirzaii B, Mokari FY. Virtual rational Betti numbers of nilpotent-by-abelian groups [Internet]. Pacific Journal of Mathematics. 2016 ; 283( 2): 381-403.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2140/pjm.2016.283.381
    • Vancouver

      Mirzaii B, Mokari FY. Virtual rational Betti numbers of nilpotent-by-abelian groups [Internet]. Pacific Journal of Mathematics. 2016 ; 283( 2): 381-403.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2140/pjm.2016.283.381

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024