The Log-gamma-logistic regression model: estimation, sensibility and residual analysis (2017)
Source: Journal of Statistical Theory and Applications. Unidade: ESALQ
Subjects: DADOS CENSURADOS, DISTRIBUIÇÃO LOGÍSTICA, MODELOS MATEMÁTICOS, VEROSSIMILHANÇA
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
HASHIMOTO, Elizabeth M et al. The Log-gamma-logistic regression model: estimation, sensibility and residual analysis. Journal of Statistical Theory and Applications, v. 16, n. 4, p. 547–564, 2017Tradução . . Disponível em: https://doi.org/10.2991/jsta.2017.16.4.9. Acesso em: 14 nov. 2024.APA
Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., & Hamedani, G. G. (2017). The Log-gamma-logistic regression model: estimation, sensibility and residual analysis. Journal of Statistical Theory and Applications, 16( 4), 547–564. doi:10.2991/jsta.2017.16.4.9NLM
Hashimoto EM, Ortega EMM, Cordeiro GM, Hamedani GG. The Log-gamma-logistic regression model: estimation, sensibility and residual analysis [Internet]. Journal of Statistical Theory and Applications. 2017 ; 16( 4): 547–564.[citado 2024 nov. 14 ] Available from: https://doi.org/10.2991/jsta.2017.16.4.9Vancouver
Hashimoto EM, Ortega EMM, Cordeiro GM, Hamedani GG. The Log-gamma-logistic regression model: estimation, sensibility and residual analysis [Internet]. Journal of Statistical Theory and Applications. 2017 ; 16( 4): 547–564.[citado 2024 nov. 14 ] Available from: https://doi.org/10.2991/jsta.2017.16.4.9