Filtros : "ANÁLISE MATEMÁTICA" "CARVALHO, ALEXANDRE NOLASCO DE" Limpar

Filtros



Refine with date range


  • Unidade: ICMC

    Assunto: ANÁLISE MATEMÁTICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e CHOLEWA, J W. Well posedness, asymptotics and regularity of solutions to semilinearstrongly damped wave equations in the banach spaces W¹p(Ω) X 'L pot. p'(Ω). . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/58c38609-e363-4161-9561-10d40c5cd00c/1474640.pdf. Acesso em: 17 nov. 2025. , 2005
    • APA

      Carvalho, A. N. de, & Cholewa, J. W. (2005). Well posedness, asymptotics and regularity of solutions to semilinearstrongly damped wave equations in the banach spaces W¹p(Ω) X 'L pot. p'(Ω). São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/58c38609-e363-4161-9561-10d40c5cd00c/1474640.pdf
    • NLM

      Carvalho AN de, Cholewa JW. Well posedness, asymptotics and regularity of solutions to semilinearstrongly damped wave equations in the banach spaces W¹p(Ω) X 'L pot. p'(Ω) [Internet]. 2005 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/58c38609-e363-4161-9561-10d40c5cd00c/1474640.pdf
    • Vancouver

      Carvalho AN de, Cholewa JW. Well posedness, asymptotics and regularity of solutions to semilinearstrongly damped wave equations in the banach spaces W¹p(Ω) X 'L pot. p'(Ω) [Internet]. 2005 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/58c38609-e363-4161-9561-10d40c5cd00c/1474640.pdf
  • Unidade: ICMC

    Assunto: ANÁLISE MATEMÁTICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini et al. Uniform exponential dichotomy and continuity of attractors for singularly pertubed damped wave equations. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/72932146-7985-4fb3-a749-6ffed7fdd7bc/1474629.pdf. Acesso em: 17 nov. 2025. , 2005
    • APA

      Bruschi, S. M., Carvalho, A. N. de, Cholewa, J. W., & Dlotko, T. (2005). Uniform exponential dichotomy and continuity of attractors for singularly pertubed damped wave equations. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/72932146-7985-4fb3-a749-6ffed7fdd7bc/1474629.pdf
    • NLM

      Bruschi SM, Carvalho AN de, Cholewa JW, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly pertubed damped wave equations [Internet]. 2005 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/72932146-7985-4fb3-a749-6ffed7fdd7bc/1474629.pdf
    • Vancouver

      Bruschi SM, Carvalho AN de, Cholewa JW, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly pertubed damped wave equations [Internet]. 2005 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/72932146-7985-4fb3-a749-6ffed7fdd7bc/1474629.pdf
  • Unidade: ICMC

    Assunto: ANÁLISE MATEMÁTICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBONE, Vera Lúcia e CARVALHO, Alexandre Nolasco de e SILVA, Karine Schiabel. Continuity of attractors for parabolic problems with localized large diffusion. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/a5fc7b2d-9ae6-43da-a69e-b46d8d0c81f8/1474437.pdf. Acesso em: 17 nov. 2025. , 2005
    • APA

      Carbone, V. L., Carvalho, A. N. de, & Silva, K. S. (2005). Continuity of attractors for parabolic problems with localized large diffusion. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/a5fc7b2d-9ae6-43da-a69e-b46d8d0c81f8/1474437.pdf
    • NLM

      Carbone VL, Carvalho AN de, Silva KS. Continuity of attractors for parabolic problems with localized large diffusion [Internet]. 2005 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/a5fc7b2d-9ae6-43da-a69e-b46d8d0c81f8/1474437.pdf
    • Vancouver

      Carbone VL, Carvalho AN de, Silva KS. Continuity of attractors for parabolic problems with localized large diffusion [Internet]. 2005 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/a5fc7b2d-9ae6-43da-a69e-b46d8d0c81f8/1474437.pdf
  • Unidade: ICMC

    Assunto: ANÁLISE MATEMÁTICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PRIMO, Marcos Roberto Teixeira. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/e02d003b-9a08-474c-b5e8-4757bdb3f38d/1319456.pdf. Acesso em: 17 nov. 2025. , 2003
    • APA

      Carvalho, A. N. de, & Primo, M. R. T. (2003). Spatial homogeneity in parabolic problems with nonlinear boundary conditions. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/e02d003b-9a08-474c-b5e8-4757bdb3f38d/1319456.pdf
    • NLM

      Carvalho AN de, Primo MRT. Spatial homogeneity in parabolic problems with nonlinear boundary conditions [Internet]. 2003 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/e02d003b-9a08-474c-b5e8-4757bdb3f38d/1319456.pdf
    • Vancouver

      Carvalho AN de, Primo MRT. Spatial homogeneity in parabolic problems with nonlinear boundary conditions [Internet]. 2003 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/e02d003b-9a08-474c-b5e8-4757bdb3f38d/1319456.pdf
  • Unidade: ICMC

    Assunto: ANÁLISE MATEMÁTICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e BRUSCHI, Simone Mazzini. Upper semicontinuity of attractors for the discretization of strongly samped wave equations. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/07c7aa26-5096-47b2-9bbb-181790b07507/1319462.pdf. Acesso em: 17 nov. 2025. , 2003
    • APA

      Carvalho, A. N. de, & Bruschi, S. M. (2003). Upper semicontinuity of attractors for the discretization of strongly samped wave equations. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/07c7aa26-5096-47b2-9bbb-181790b07507/1319462.pdf
    • NLM

      Carvalho AN de, Bruschi SM. Upper semicontinuity of attractors for the discretization of strongly samped wave equations [Internet]. 2003 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/07c7aa26-5096-47b2-9bbb-181790b07507/1319462.pdf
    • Vancouver

      Carvalho AN de, Bruschi SM. Upper semicontinuity of attractors for the discretization of strongly samped wave equations [Internet]. 2003 ;[citado 2025 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/07c7aa26-5096-47b2-9bbb-181790b07507/1319462.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025