Filtros : "Topological Methods in Nonlinear Analysis" "Inglês" Removido: "2020" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, v. 65, n. 2, p. 623-651, 2025Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2024.051. Acesso em: 28 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, 65( 2), 623-651. doi:10.12775/TMNA.2024.051
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2024.051
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2024.051
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: PROBLEMAS VARIACIONAIS, PROBLEMAS VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORONA, Dario et al. On the relative category in the brake orbits problem. Topological Methods in Nonlinear Analysis, v. 61, n. 1, p. 199-215, 2023Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.057. Acesso em: 28 nov. 2025.
    • APA

      Corona, D., Giambó, R., Giannoni, F., & Piccione, P. (2023). On the relative category in the brake orbits problem. Topological Methods in Nonlinear Analysis, 61( 1), 199-215. doi:10.12775/TMNA.2022.057
    • NLM

      Corona D, Giambó R, Giannoni F, Piccione P. On the relative category in the brake orbits problem [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 199-215.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.057
    • Vancouver

      Corona D, Giambó R, Giannoni F, Piccione P. On the relative category in the brake orbits problem [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 199-215.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.057
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, TEORIA DO ÍNDICE, COBORDISMO, VARIEDADES TOPOLÓGICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty Abaroa de et al. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds. Topological Methods in Nonlinear Analysis, v. 62, n. 1, p. Se 2023, 2023Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.070. Acesso em: 28 nov. 2025.
    • APA

      Rezende, K. A. de, Grulha Júnior, N. de G., Lima, D. V. de S., & Zigart, M. A. de J. (2023). Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds. Topological Methods in Nonlinear Analysis, 62( 1), Se 2023. doi:10.12775/TMNA.2022.070
    • NLM

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 62( 1): Se 2023.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.070
    • Vancouver

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 62( 1): Se 2023.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.070
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: GEOMETRIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROWN, Robert F. e GONÇALVES, Daciberg Lima. Lift factors for the Nielsen root theory on n-valued maps. Topological Methods in Nonlinear Analysis, v. 61, n. 1, p. 269–289, 2023Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.017. Acesso em: 28 nov. 2025.
    • APA

      Brown, R. F., & Gonçalves, D. L. (2023). Lift factors for the Nielsen root theory on n-valued maps. Topological Methods in Nonlinear Analysis, 61( 1), 269–289. doi:10.12775/TMNA.2022.017
    • NLM

      Brown RF, Gonçalves DL. Lift factors for the Nielsen root theory on n-valued maps [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 269–289.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.017
    • Vancouver

      Brown RF, Gonçalves DL. Lift factors for the Nielsen root theory on n-valued maps [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 61( 1): 269–289.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.017
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE, VARIEDADES TOPOLÓGICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty Abaroa de et al. Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis, v. 60, n. 1, p. 221-265, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.054. Acesso em: 28 nov. 2025.
    • APA

      Rezende, K. A. de, Grulha Júnior, N. de G., Lima, D. V. de S., & Zigart, M. A. de J. (2022). Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis, 60( 1), 221-265. doi:10.12775/TMNA.2021.054
    • NLM

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 1): 221-265.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.054
    • Vancouver

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 1): 221-265.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.054
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 491-516, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.005. Acesso em: 28 nov. 2025.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2022). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, 60( 2), 491-516. doi:10.12775/TMNA.2022.005
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.005
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.005
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: AUTOVALORES E AUTOVETORES, TEORIA ESPECTRAL, TEORIA DO GRAU

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 499-523, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.006. Acesso em: 28 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory. Topological Methods in Nonlinear Analysis, 59( 2A), 499-523. doi:10.12775/TMNA.2021.006
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 499-523.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.006
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. The Brouwer degree associated to classical eigenvalue problems and applications to nonlinear spectral theory [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 499-523.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.006
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 28 nov. 2025.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEOREMA DO PONTO FIXO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e GRAU, Rogelio e MACENA, Maria Carolina Stefani Mesquita. Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 725-760, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.027. Acesso em: 28 nov. 2025.
    • APA

      Federson, M., Grau, R., & Macena, M. C. S. M. (2022). Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, 60( 2), 725-760. doi:10.12775/TMNA.2022.027
    • NLM

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.027
    • Vancouver

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.027
  • Source: Topological Methods in Nonlinear Analysis. Unidades: IME, ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS-PARABÓLICAS QUASILINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, v. 58, n. 1, p. 209-231, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.009. Acesso em: 28 nov. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2021). A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, 58( 1), 209-231. doi:10.12775/TMNA.2021.009
    • NLM

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.009
    • Vancouver

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.009
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANTOS, Anderson Paião dos e SILVA, Weslem Liberato. The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, v. 58, n. 2, p. 367-388, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.020. Acesso em: 28 nov. 2025.
    • APA

      Gonçalves, D. L., Santos, A. P. dos, & Silva, W. L. (2021). The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis, 58( 2), 367-388. doi:10.12775/TMNA.2021.020
    • NLM

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.020
    • Vancouver

      Gonçalves DL, Santos AP dos, Silva WL. The Borsuk-Ulam property for maps from the product of two surfaces into a surface [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 2): 367-388.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.020
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ESTABILIDADE DE LIAPUNOV, EQUAÇÕES IMPULSIVAS, ESTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e SOUTO, Ginnara M. On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, v. 53, n. 1, p. 127-150, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.042. Acesso em: 28 nov. 2025.
    • APA

      Bonotto, E. de M., & Souto, G. M. (2019). On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, 53( 1), 127-150. doi:10.12775/TMNA.2018.042
    • NLM

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2018.042
    • Vancouver

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2018.042
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, v. 53, n. 1, p. 1-23, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.048. Acesso em: 28 nov. 2025.
    • APA

      Carvalho, A. N. de, & Pires, L. (2019). Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, 53( 1), 1-23. doi:10.12775/TMNA.2018.048
    • NLM

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2018.048
    • Vancouver

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2018.048
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, v. 54, n. 1, p. Se 2019, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2019.023. Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2019). Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, 54( 1), Se 2019. doi:10.12775/TMNA.2019.023
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2019.023
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2019.023
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S et al. Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 259-311, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.047. Acesso em: 28 nov. 2025.
    • APA

      Lima, D. V. de S., Manzoli Neto, O., Rezende, K. A. de, & Silveira, M. R. da. (2018). Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, 51( 1), 259-311. doi:10.12775/TMNA.2017.047
    • NLM

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2017.047
    • Vancouver

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2017.047
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES INTEGRO-DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA TOPOLÓGICA, ESTABILIDADE DE LIAPUNOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Severino Horácio da e PEREIRA, Antônio Luiz. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, v. 51, n. 2, p. 583-598, 2018Tradução . . Disponível em: https://doi.org/10.12775/tmna.2018.004. Acesso em: 28 nov. 2025.
    • APA

      Silva, S. H. da, & Pereira, A. L. (2018). A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, 51( 2), 583-598. doi:10.12775/tmna.2018.004
    • NLM

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2018.004
    • Vancouver

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2018.004
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, TEORIA ESPECTRAL, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 52, n. 2, p. 631-664, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.025. Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2018). On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 52( 2), 631-664. doi:10.12775/TMNA.2018.025
    • NLM

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2018.025
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2018.025
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid S e OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 183-213, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.051. Acesso em: 28 nov. 2025.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2017.051
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 50, n. 2, p. 741-755, 2017Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.043. Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2017). A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 50( 2), 741-755. doi:10.12775/TMNA.2017.043
    • NLM

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2017.043
    • Vancouver

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2017.043
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES IMPULSIVAS, ESTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e GIMENES, Luciene P. e SOUTO, Ginnara M. Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, v. 49, n. 1, p. 133-163, 2017Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2016.065. Acesso em: 28 nov. 2025.
    • APA

      Bonotto, E. de M., Gimenes, L. P., & Souto, G. M. (2017). Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, 49( 1), 133-163. doi:10.12775/TMNA.2016.065
    • NLM

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2016.065
    • Vancouver

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2016.065

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025