Filtros : "Topological Methods in Nonlinear Analysis" "Financiamento CAPES" Removido: "Indexado no MathSciNet" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 491-516, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.005. Acesso em: 28 nov. 2025.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2022). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, 60( 2), 491-516. doi:10.12775/TMNA.2022.005
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.005
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2022.005
  • Source: Topological Methods in Nonlinear Analysis. Unidades: IME, ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS-PARABÓLICAS QUASILINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, v. 58, n. 1, p. 209-231, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.009. Acesso em: 28 nov. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2021). A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, 58( 1), 209-231. doi:10.12775/TMNA.2021.009
    • NLM

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.009
    • Vancouver

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.009

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025