Filtros : "Stochastic Processes and their Applications" "Indexado no ISI - Institute for Scientific Information" Limpar

Filtros



Limitar por data


  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e NIEDERHAUSER, Beat M. Harness processes and harmonic crystals. Stochastic Processes and their Applications, v. 116, n. 6, p. 939-956, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2005.12.004. Acesso em: 09 nov. 2025.
    • APA

      Ferrari, P. A., & Niederhauser, B. M. (2006). Harness processes and harmonic crystals. Stochastic Processes and their Applications, 116( 6), 939-956. doi:10.1016/j.spa.2005.12.004
    • NLM

      Ferrari PA, Niederhauser BM. Harness processes and harmonic crystals [Internet]. Stochastic Processes and their Applications. 2006 ; 116( 6): 939-956.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2005.12.004
    • Vancouver

      Ferrari PA, Niederhauser BM. Harness processes and harmonic crystals [Internet]. Stochastic Processes and their Applications. 2006 ; 116( 6): 939-956.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2005.12.004
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MEDEIROS, Deborah Pereira de e VACHKOVSKAIA, Marina. Time fluctuations of the random average process with parabolic initial conditions. Stochastic Processes and their Applications, v. 103, n. 2, p. 257-276, 2003Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(02)00210-7. Acesso em: 09 nov. 2025.
    • APA

      Fontes, L. R., Medeiros, D. P. de, & Vachkovskaia, M. (2003). Time fluctuations of the random average process with parabolic initial conditions. Stochastic Processes and their Applications, 103( 2), 257-276. doi:10.1016/s0304-4149(02)00210-7
    • NLM

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the random average process with parabolic initial conditions [Internet]. Stochastic Processes and their Applications. 2003 ; 103( 2): 257-276.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(02)00210-7
    • Vancouver

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the random average process with parabolic initial conditions [Internet]. Stochastic Processes and their Applications. 2003 ; 103( 2): 257-276.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(02)00210-7
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS DE POISSON

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e FERNÁNDEZ, Roberto e GARCIA, Nancy Lopes. Perfect simulation for interacting point processes, loss networks and ising models. Stochastic Processes and their Applications, v. 102, n. 1, p. 63-88, 2002Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(02)00180-1. Acesso em: 09 nov. 2025.
    • APA

      Ferrari, P. A., Fernández, R., & Garcia, N. L. (2002). Perfect simulation for interacting point processes, loss networks and ising models. Stochastic Processes and their Applications, 102( 1), 63-88. doi:10.1016/s0304-4149(02)00180-1
    • NLM

      Ferrari PA, Fernández R, Garcia NL. Perfect simulation for interacting point processes, loss networks and ising models [Internet]. Stochastic Processes and their Applications. 2002 ; 102( 1): 63-88.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(02)00180-1
    • Vancouver

      Ferrari PA, Fernández R, Garcia NL. Perfect simulation for interacting point processes, loss networks and ising models [Internet]. Stochastic Processes and their Applications. 2002 ; 102( 1): 63-88.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(02)00180-1
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assuntos: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu. Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, v. 91, n. 1, p. 21-37, 2001Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(00)00055-7. Acesso em: 09 nov. 2025.
    • APA

      Machado, F. P., Menshikov, M. V. 'evich, & Popov, S. Y. (2001). Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, 91( 1), 21-37. doi:10.1016/s0304-4149(00)00055-7
    • NLM

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7
    • Vancouver

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDJEL, Enrique Daniel et al. Convergence to the maximal invariant measure for a zero-range process with random rates. Stochastic Processes and their Applications, v. 90, n. 1, p. 67-81, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(00)00037-5. Acesso em: 09 nov. 2025.
    • APA

      Andjel, E. D., Ferrari, P. A., Guiol, H., & Landim, C. da C. (2000). Convergence to the maximal invariant measure for a zero-range process with random rates. Stochastic Processes and their Applications, 90( 1), 67-81. doi:10.1016/s0304-4149(00)00037-5
    • NLM

      Andjel ED, Ferrari PA, Guiol H, Landim C da C. Convergence to the maximal invariant measure for a zero-range process with random rates [Internet]. Stochastic Processes and their Applications. 2000 ; 90( 1): 67-81.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(00)00037-5
    • Vancouver

      Andjel ED, Ferrari PA, Guiol H, Landim C da C. Convergence to the maximal invariant measure for a zero-range process with random rates [Internet]. Stochastic Processes and their Applications. 2000 ; 90( 1): 67-81.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(00)00037-5
  • Fonte: Stochastic Processes and their Applications. Unidades: IEA, IME

    Assunto: PROBABILIDADE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRESSAUD, Xavier e FERNANDEZ, Roberto e GALVES, Antonio. Speed of d¯-convergence for Markov approximations of chains with complete connections: a coupling approach. Stochastic Processes and their Applications, v. 83, n. 1, p. 127-138, 1999Tradução . . Disponível em: https://doi.org/10.1016/S0304-4149(99)00025-3. Acesso em: 09 nov. 2025.
    • APA

      Bressaud, X., Fernandez, R., & Galves, A. (1999). Speed of d¯-convergence for Markov approximations of chains with complete connections: a coupling approach. Stochastic Processes and their Applications, 83( 1), 127-138. doi:10.1016/S0304-4149(99)00025-3
    • NLM

      Bressaud X, Fernandez R, Galves A. Speed of d¯-convergence for Markov approximations of chains with complete connections: a coupling approach [Internet]. Stochastic Processes and their Applications. 1999 ; 83( 1): 127-138.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/S0304-4149(99)00025-3
    • Vancouver

      Bressaud X, Fernandez R, Galves A. Speed of d¯-convergence for Markov approximations of chains with complete connections: a coupling approach [Internet]. Stochastic Processes and their Applications. 1999 ; 83( 1): 127-138.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/S0304-4149(99)00025-3

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025