Filtros : "Probability Theory and Related Fields" "Estados Unidos" Limpar

Filtros



Refine with date range


  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRIBERGH, Alexander e GANTERT, Nina e POPOV, Serguei Yu. On slowdown and speedup of transient random walks in random environment. Probability Theory and Related Fields, v. 147, n. 1-2, p. 43-88, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00440-009-0201-2. Acesso em: 12 nov. 2025.
    • APA

      Fribergh, A., Gantert, N., & Popov, S. Y. (2010). On slowdown and speedup of transient random walks in random environment. Probability Theory and Related Fields, 147( 1-2), 43-88. doi:10.1007/s00440-009-0201-2
    • NLM

      Fribergh A, Gantert N, Popov SY. On slowdown and speedup of transient random walks in random environment [Internet]. Probability Theory and Related Fields. 2010 ; 147( 1-2): 43-88.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s00440-009-0201-2
    • Vancouver

      Fribergh A, Gantert N, Popov SY. On slowdown and speedup of transient random walks in random environment [Internet]. Probability Theory and Related Fields. 2010 ; 147( 1-2): 43-88.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s00440-009-0201-2
  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: INFERÊNCIA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e SCHONMANN, Roberto Henrique. Threshold θ≥2 contact processes on homogeneous trees. Probability Theory and Related Fields, v. 141, n. 3-4, p. 513-541, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00440-007-0092-z. Acesso em: 12 nov. 2025.
    • APA

      Fontes, L. R., & Schonmann, R. H. (2008). Threshold θ≥2 contact processes on homogeneous trees. Probability Theory and Related Fields, 141( 3-4), 513-541. doi:10.1007/s00440-007-0092-z
    • NLM

      Fontes LR, Schonmann RH. Threshold θ≥2 contact processes on homogeneous trees [Internet]. Probability Theory and Related Fields. 2008 ; 141( 3-4): 513-541.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s00440-007-0092-z
    • Vancouver

      Fontes LR, Schonmann RH. Threshold θ≥2 contact processes on homogeneous trees [Internet]. Probability Theory and Related Fields. 2008 ; 141( 3-4): 513-541.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s00440-007-0092-z
  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PERCOLAÇÃO

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MATHIEU, Pierre. On symmetric random walks with random conductances on Z(d). Probability Theory and Related Fields, v. 134, n. 4, p. 565-602, 2006Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00440-005-0448-1. Acesso em: 12 nov. 2025.
    • APA

      Fontes, L. R., & Mathieu, P. (2006). On symmetric random walks with random conductances on Z(d). Probability Theory and Related Fields, 134( 4), 565-602. doi:10.1007%2Fs00440-005-0448-1
    • NLM

      Fontes LR, Mathieu P. On symmetric random walks with random conductances on Z(d) [Internet]. Probability Theory and Related Fields. 2006 ; 134( 4): 565-602.[citado 2025 nov. 12 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00440-005-0448-1
    • Vancouver

      Fontes LR, Mathieu P. On symmetric random walks with random conductances on Z(d) [Internet]. Probability Theory and Related Fields. 2006 ; 134( 4): 565-602.[citado 2025 nov. 12 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00440-005-0448-1
  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMETS, Francis M. e POPOV, Serguei Yu. Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment. Probability Theory and Related Fields, v. 126, n. 4, p. 571-609, 2003Tradução . . Disponível em: https://doi.org/10.1007/s00440-003-0273-3. Acesso em: 12 nov. 2025.
    • APA

      Comets, F. M., & Popov, S. Y. (2003). Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment. Probability Theory and Related Fields, 126( 4), 571-609. doi:10.1007/s00440-003-0273-3
    • NLM

      Comets FM, Popov SY. Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment [Internet]. Probability Theory and Related Fields. 2003 ; 126( 4): 571-609.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s00440-003-0273-3
    • Vancouver

      Comets FM, Popov SY. Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment [Internet]. Probability Theory and Related Fields. 2003 ; 126( 4): 571-609.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s00440-003-0273-3
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, v. 119, n. 2, p. 176-186, 2001Tradução . . Disponível em: https://doi.org/10.1007/pl00008757. Acesso em: 12 nov. 2025.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., & Vachkovskaia, M. (2001). On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, 119( 2), 176-186. doi:10.1007/pl00008757
    • NLM

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/pl00008757
    • Vancouver

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/pl00008757
  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e ISOPI, M. e NEWMAN, C. M. Chaotic time dependence in a disordered spin system. Probability Theory and Related Fields, v. 11, n. 3, p. 417-443, 1999Tradução . . Disponível em: https://doi.org/10.1007/s004400050244. Acesso em: 12 nov. 2025.
    • APA

      Fontes, L. R., Isopi, M., & Newman, C. M. (1999). Chaotic time dependence in a disordered spin system. Probability Theory and Related Fields, 11( 3), 417-443. doi:10.1007/s004400050244
    • NLM

      Fontes LR, Isopi M, Newman CM. Chaotic time dependence in a disordered spin system [Internet]. Probability Theory and Related Fields. 1999 ; 11( 3): 417-443.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s004400050244
    • Vancouver

      Fontes LR, Isopi M, Newman CM. Chaotic time dependence in a disordered spin system [Internet]. Probability Theory and Related Fields. 1999 ; 11( 3): 417-443.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1007/s004400050244

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025