Filtros : "Journal of Differential Equations" "2012" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, INTEGRAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e MESQUITA, Jaqueline G e SLAVÍK, Antonín. Measure functional differential equations and functional dynamic equations on time scales. Journal of Differential Equations, v. 252, n. 6, p. 3816-3847, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2011.11.005. Acesso em: 27 nov. 2025.
    • APA

      Federson, M., Mesquita, J. G., & Slavík, A. (2012). Measure functional differential equations and functional dynamic equations on time scales. Journal of Differential Equations, 252( 6), 3816-3847. doi:10.1016/j.jde.2011.11.005
    • NLM

      Federson M, Mesquita JG, Slavík A. Measure functional differential equations and functional dynamic equations on time scales [Internet]. Journal of Differential Equations. 2012 ; 252( 6): 3816-3847.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2011.11.005
    • Vancouver

      Federson M, Mesquita JG, Slavík A. Measure functional differential equations and functional dynamic equations on time scales [Internet]. Journal of Differential Equations. 2012 ; 252( 6): 3816-3847.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2011.11.005
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e MEDEIRA, Cleber de e ZANI, Sérgio Luís. Globally solvable systems of complex vector fields. Journal of Differential Equations, v. 252, n. 8, p. 4598-4623, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2012.01.007. Acesso em: 27 nov. 2025.
    • APA

      Bergamasco, A. P., Medeira, C. de, & Zani, S. L. (2012). Globally solvable systems of complex vector fields. Journal of Differential Equations, 252( 8), 4598-4623. doi:10.1016/j.jde.2012.01.007
    • NLM

      Bergamasco AP, Medeira C de, Zani SL. Globally solvable systems of complex vector fields [Internet]. Journal of Differential Equations. 2012 ; 252( 8): 4598-4623.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2012.01.007
    • Vancouver

      Bergamasco AP, Medeira C de, Zani SL. Globally solvable systems of complex vector fields [Internet]. Journal of Differential Equations. 2012 ; 252( 8): 4598-4623.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2012.01.007
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: ANÁLISE VARIACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PARDO, Rosa e PEREIRA, Antônio Luiz e SABINA DE LIS, Jose C. The tangential variation of a localized flux-type eigenvalue problem. Journal of Differential Equations, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2011.08.049. Acesso em: 27 nov. 2025.
    • APA

      Pardo, R., Pereira, A. L., & Sabina de Lis, J. C. (2012). The tangential variation of a localized flux-type eigenvalue problem. Journal of Differential Equations. doi:10.1016/j.jde.2011.08.049
    • NLM

      Pardo R, Pereira AL, Sabina de Lis JC. The tangential variation of a localized flux-type eigenvalue problem [Internet]. Journal of Differential Equations. 2012 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2011.08.049
    • Vancouver

      Pardo R, Pereira AL, Sabina de Lis JC. The tangential variation of a localized flux-type eigenvalue problem [Internet]. Journal of Differential Equations. 2012 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2011.08.049
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES PARABÓLICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO, Gleiciane da Silva e OLIVA, Sérgio Muniz. Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary. Journal of Differential Equations, v. 253, n. 9, p. 2573-2592, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2012.07.008. Acesso em: 27 nov. 2025.
    • APA

      Aragão, G. da S., & Oliva, S. M. (2012). Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary. Journal of Differential Equations, 253( 9), 2573-2592. doi:10.1016/j.jde.2012.07.008
    • NLM

      Aragão G da S, Oliva SM. Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary [Internet]. Journal of Differential Equations. 2012 ; 253( 9): 2573-2592.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2012.07.008
    • Vancouver

      Aragão G da S, Oliva SM. Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary [Internet]. Journal of Differential Equations. 2012 ; 253( 9): 2573-2592.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2012.07.008

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025