Filtros : "Data Mining and Knowledge Discovery" "Canadá" Limpar

Filtros



Limitar por data


  • Fonte: Data Mining and Knowledge Discovery. Unidade: ICMC

    Assuntos: BANCO DE DADOS, MINERAÇÃO DE DADOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABRAL, Eugenio Ferreira et al. Efficient outlier detection in numerical and categorical data. Data Mining and Knowledge Discovery, v. 39, p. 1-46, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10618-024-01084-1. Acesso em: 11 nov. 2025.
    • APA

      Cabral, E. F., Sánchez Vinces, B. V., Silva, G. D. F., Sander, J., & Cordeiro, R. L. F. (2025). Efficient outlier detection in numerical and categorical data. Data Mining and Knowledge Discovery, 39, 1-46. doi:10.1007/s10618-024-01084-1
    • NLM

      Cabral EF, Sánchez Vinces BV, Silva GDF, Sander J, Cordeiro RLF. Efficient outlier detection in numerical and categorical data [Internet]. Data Mining and Knowledge Discovery. 2025 ; 39 1-46.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-024-01084-1
    • Vancouver

      Cabral EF, Sánchez Vinces BV, Silva GDF, Sander J, Cordeiro RLF. Efficient outlier detection in numerical and categorical data [Internet]. Data Mining and Knowledge Discovery. 2025 ; 39 1-46.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-024-01084-1
  • Fonte: Data Mining and Knowledge Discovery. Unidade: ICMC

    Assuntos: APRENDIZADO COMPUTACIONAL, ALGORITMOS ÚTEIS E ESPECÍFICOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GERTRUDES, Jadson Castro et al. A unified view of density-based methods for semi-supervised clustering and classification. Data Mining and Knowledge Discovery, v. No 2019, n. 6, p. 1894-1952, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10618-019-00651-1. Acesso em: 11 nov. 2025.
    • APA

      Gertrudes, J. C., Zimek, A., Sander, J., & Campello, R. J. G. B. (2019). A unified view of density-based methods for semi-supervised clustering and classification. Data Mining and Knowledge Discovery, No 2019( 6), 1894-1952. doi:10.1007/s10618-019-00651-1
    • NLM

      Gertrudes JC, Zimek A, Sander J, Campello RJGB. A unified view of density-based methods for semi-supervised clustering and classification [Internet]. Data Mining and Knowledge Discovery. 2019 ; No 2019( 6): 1894-1952.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-019-00651-1
    • Vancouver

      Gertrudes JC, Zimek A, Sander J, Campello RJGB. A unified view of density-based methods for semi-supervised clustering and classification [Internet]. Data Mining and Knowledge Discovery. 2019 ; No 2019( 6): 1894-1952.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-019-00651-1
  • Fonte: Data Mining and Knowledge Discovery. Unidade: ICMC

    Assuntos: INTELIGÊNCIA ARTIFICIAL, APRENDIZADO COMPUTACIONAL, MINERAÇÃO DE DADOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Luís P. F et al. Ensembles of label noise filters: a ranking approach. Data Mining and Knowledge Discovery, v. 30, n. 5, p. 1192-1216, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10618-016-0475-9. Acesso em: 11 nov. 2025.
    • APA

      Garcia, L. P. F., Lorena, A. C., Matwin, S., & Carvalho, A. C. P. de L. F. de. (2016). Ensembles of label noise filters: a ranking approach. Data Mining and Knowledge Discovery, 30( 5), 1192-1216. doi:10.1007/s10618-016-0475-9
    • NLM

      Garcia LPF, Lorena AC, Matwin S, Carvalho ACP de LF de. Ensembles of label noise filters: a ranking approach [Internet]. Data Mining and Knowledge Discovery. 2016 ; 30( 5): 1192-1216.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-016-0475-9
    • Vancouver

      Garcia LPF, Lorena AC, Matwin S, Carvalho ACP de LF de. Ensembles of label noise filters: a ranking approach [Internet]. Data Mining and Knowledge Discovery. 2016 ; 30( 5): 1192-1216.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-016-0475-9

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025