Filtros : "Data Mining and Knowledge Discovery" "Indexado no MathSciNet" Limpar

Filtros



Refine with date range


  • Source: Data Mining and Knowledge Discovery. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAIMUNDO, Marcos M e NONATO, Luis Gustavo e POCO, Jorge. Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm. Data Mining and Knowledge Discovery, v. 38, p. 2942-2974, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10618-022-00906-4. Acesso em: 11 nov. 2025.
    • APA

      Raimundo, M. M., Nonato, L. G., & Poco, J. (2024). Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm. Data Mining and Knowledge Discovery, 38, 2942-2974. doi:10.1007/s10618-022-00906-4
    • NLM

      Raimundo MM, Nonato LG, Poco J. Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm [Internet]. Data Mining and Knowledge Discovery. 2024 ; 38 2942-2974.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-022-00906-4
    • Vancouver

      Raimundo MM, Nonato LG, Poco J. Mining Pareto-optimal counterfactual antecedents with a branch-and-boundmodel-agnostic algorithm [Internet]. Data Mining and Knowledge Discovery. 2024 ; 38 2942-2974.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-022-00906-4
  • Source: Data Mining and Knowledge Discovery. Unidade: ICMC

    Subjects: ANÁLISE DE SÉRIES TEMPORAIS, MINERAÇÃO DE DADOS, ALGORITMOS ÚTEIS E ESPECÍFICOS, BENCHMARKS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Vinícius Mourão Alves de et al. Challenges in benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge Discovery, v. No 2020, n. 6, p. 1805-1858, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10618-020-00698-5. Acesso em: 11 nov. 2025.
    • APA

      Souza, V. M. A. de, Reis, D. M. dos, Maletzke, A. G., & Batista, G. E. de A. P. A. (2020). Challenges in benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge Discovery, No 2020( 6), 1805-1858. doi:10.1007/s10618-020-00698-5
    • NLM

      Souza VMA de, Reis DM dos, Maletzke AG, Batista GE de APA. Challenges in benchmarking stream learning algorithms with real-world data [Internet]. Data Mining and Knowledge Discovery. 2020 ; No 2020( 6): 1805-1858.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-020-00698-5
    • Vancouver

      Souza VMA de, Reis DM dos, Maletzke AG, Batista GE de APA. Challenges in benchmarking stream learning algorithms with real-world data [Internet]. Data Mining and Knowledge Discovery. 2020 ; No 2020( 6): 1805-1858.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-020-00698-5
  • Source: Data Mining and Knowledge Discovery. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, ALGORITMOS ÚTEIS E ESPECÍFICOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GERTRUDES, Jadson Castro et al. A unified view of density-based methods for semi-supervised clustering and classification. Data Mining and Knowledge Discovery, v. No 2019, n. 6, p. 1894-1952, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10618-019-00651-1. Acesso em: 11 nov. 2025.
    • APA

      Gertrudes, J. C., Zimek, A., Sander, J., & Campello, R. J. G. B. (2019). A unified view of density-based methods for semi-supervised clustering and classification. Data Mining and Knowledge Discovery, No 2019( 6), 1894-1952. doi:10.1007/s10618-019-00651-1
    • NLM

      Gertrudes JC, Zimek A, Sander J, Campello RJGB. A unified view of density-based methods for semi-supervised clustering and classification [Internet]. Data Mining and Knowledge Discovery. 2019 ; No 2019( 6): 1894-1952.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-019-00651-1
    • Vancouver

      Gertrudes JC, Zimek A, Sander J, Campello RJGB. A unified view of density-based methods for semi-supervised clustering and classification [Internet]. Data Mining and Knowledge Discovery. 2019 ; No 2019( 6): 1894-1952.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10618-019-00651-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025