Filtros : "Brazilian Journal of Probability and Statistics" "MODELOS LINEARES GENERALIZADOS" Limpar

Filtros



Refine with date range


  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assunto: MODELOS LINEARES GENERALIZADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Clécio S. e MONTORIL, Michel Helcias e PAULA, Gilberto Alvarenga. Partially linear models with p-order autoregressive skew-normal errors. Brazilian Journal of Probability and Statistics, v. 36, n. 4, p. 792-806, 2022Tradução . . Disponível em: https://doi.org/10.1214/22-bjps556. Acesso em: 10 nov. 2025.
    • APA

      Ferreira, C. S., Montoril, M. H., & Paula, G. A. (2022). Partially linear models with p-order autoregressive skew-normal errors. Brazilian Journal of Probability and Statistics, 36( 4), 792-806. doi:10.1214/22-bjps556
    • NLM

      Ferreira CS, Montoril MH, Paula GA. Partially linear models with p-order autoregressive skew-normal errors [Internet]. Brazilian Journal of Probability and Statistics. 2022 ; 36( 4): 792-806.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/22-bjps556
    • Vancouver

      Ferreira CS, Montoril MH, Paula GA. Partially linear models with p-order autoregressive skew-normal errors [Internet]. Brazilian Journal of Probability and Statistics. 2022 ; 36( 4): 792-806.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/22-bjps556
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assunto: MODELOS LINEARES GENERALIZADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDEIRO, Gauss Moutinho e LABOURIAU, Rodrigo e BOTTER, Denise Aparecida. An introduction to Bent Jørgensen’s ideas. Brazilian Journal of Probability and Statistics, v. 35, n. 1, p. 2-20, 2021Tradução . . Disponível em: https://doi.org/10.1214/19-BJPS458. Acesso em: 10 nov. 2025.
    • APA

      Cordeiro, G. M., Labouriau, R., & Botter, D. A. (2021). An introduction to Bent Jørgensen’s ideas. Brazilian Journal of Probability and Statistics, 35( 1), 2-20. doi:10.1214/19-BJPS458
    • NLM

      Cordeiro GM, Labouriau R, Botter DA. An introduction to Bent Jørgensen’s ideas [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 1): 2-20.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/19-BJPS458
    • Vancouver

      Cordeiro GM, Labouriau R, Botter DA. An introduction to Bent Jørgensen’s ideas [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 1): 2-20.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/19-BJPS458
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assunto: MODELOS LINEARES GENERALIZADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAGALHÃES, Tiago Maia e BOTTER, Denise Aparecida e SANDOVAL, Monica Carneiro. A general expression for second-order covariance matrices: an application to dispersion models. Brazilian Journal of Probability and Statistics, v. 35, n. 1, p. 37-49, 2021Tradução . . Disponível em: https://doi.org/10.1214/20-BJPS489. Acesso em: 10 nov. 2025.
    • APA

      Magalhães, T. M., Botter, D. A., & Sandoval, M. C. (2021). A general expression for second-order covariance matrices: an application to dispersion models. Brazilian Journal of Probability and Statistics, 35( 1), 37-49. doi:10.1214/20-BJPS489
    • NLM

      Magalhães TM, Botter DA, Sandoval MC. A general expression for second-order covariance matrices: an application to dispersion models [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 1): 37-49.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/20-BJPS489
    • Vancouver

      Magalhães TM, Botter DA, Sandoval MC. A general expression for second-order covariance matrices: an application to dispersion models [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 1): 37-49.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/20-BJPS489

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025