Filtros : "Algebra and Logic" "ÁLGEBRAS DE LIE" Limpar

Filtros



Refine with date range


  • Source: Algebra and Logic. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e SHESTAKOV, Ivan P e RASSKAZOVA, Marina. New examples of binary Lie superalgebras and algebras. Algebra and Logic, v. 60, n. 6, p. 366-374, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10469-022-09663-1. Acesso em: 16 nov. 2025.
    • APA

      Grichkov, A., Shestakov, I. P., & Rasskazova, M. (2022). New examples of binary Lie superalgebras and algebras. Algebra and Logic, 60( 6), 366-374. doi:10.1007/s10469-022-09663-1
    • NLM

      Grichkov A, Shestakov IP, Rasskazova M. New examples of binary Lie superalgebras and algebras [Internet]. Algebra and Logic. 2022 ; 60( 6): 366-374.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-022-09663-1
    • Vancouver

      Grichkov A, Shestakov IP, Rasskazova M. New examples of binary Lie superalgebras and algebras [Internet]. Algebra and Logic. 2022 ; 60( 6): 366-374.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-022-09663-1
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GRUPOS ALGÉBRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e RASSKAZOVA, M. N. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2. Algebra and Logic, v. 56, n. 4, p. 269-280, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10469-017-9448-3. Acesso em: 16 nov. 2025.
    • APA

      Grichkov, A., & Rasskazova, M. N. (2017). Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2. Algebra and Logic, 56( 4), 269-280. doi:10.1007/s10469-017-9448-3
    • NLM

      Grichkov A, Rasskazova MN. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2 [Internet]. Algebra and Logic. 2017 ; 56( 4): 269-280.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-017-9448-3
    • Vancouver

      Grichkov A, Rasskazova MN. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2 [Internet]. Algebra and Logic. 2017 ; 56( 4): 269-280.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-017-9448-3
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA DIFERENCIAL, ÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHELYABIN, V. N e POPOV, A. A e SHESTAKOV, Ivan P. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, v. 52, n. 4, p. 277-289, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10469-013-9242-9. Acesso em: 16 nov. 2025.
    • APA

      Zhelyabin, V. N., Popov, A. A., & Shestakov, I. P. (2013). The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, 52( 4), 277-289. doi:10.1007/s10469-013-9242-9
    • NLM

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
    • Vancouver

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMANOVSKII, N. S e SHESTAKOV, Ivan P. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, v. 47, n. 4, p. 269-278, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10469-008-9018-9. Acesso em: 16 nov. 2025.
    • APA

      Romanovskii, N. S., & Shestakov, I. P. (2008). Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, 47( 4), 269-278. doi:10.1007/s10469-008-9018-9
    • NLM

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-008-9018-9
    • Vancouver

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-008-9018-9
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, VARIEDADES ALGÉBRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHELYABIN, V. N e SHESTAKOV, Ivan P. The Chevalley and Costant theorems for Mal’tsev algebras. Algebra and Logic, v. 46, n. 5, p. 303-317, 2007Tradução . . Disponível em: https://doi.org/10.1007/s10469-007-0031-1. Acesso em: 16 nov. 2025.
    • APA

      Zhelyabin, V. N., & Shestakov, I. P. (2007). The Chevalley and Costant theorems for Mal’tsev algebras. Algebra and Logic, 46( 5), 303-317. doi:10.1007/s10469-007-0031-1
    • NLM

      Zhelyabin VN, Shestakov IP. The Chevalley and Costant theorems for Mal’tsev algebras [Internet]. Algebra and Logic. 2007 ; 46( 5): 303-317.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-007-0031-1
    • Vancouver

      Zhelyabin VN, Shestakov IP. The Chevalley and Costant theorems for Mal’tsev algebras [Internet]. Algebra and Logic. 2007 ; 46( 5): 303-317.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10469-007-0031-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025